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Data Analytics

• Who is watching
• What to measureWhat to measure
• How frequently

Wh t t h• When to act on changes
• How PM can help identify outliers
• How PM can measure deviations
• Metrics that can be measuredMetrics that can be measured.
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Who is watching?

• Senior Management
• StakeholdersStakeholders
• Investors

R l t• Regulators
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What should be measured?

• Broadly speaking LTC carriers should monitor:

1. Operational performance in the following areas:p p g
• Administration
• Claims, specifically:

– Risk profilingp g
– Morbidity monitoring 

2. Financial performance:
• The drivers of corporate reporting, such as Source of Earnings (SoE)
• Rate activity
• Reserve analysis

E• Expenses
• Underwriting and sales 
• Investment performance
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What should be measured – Operational

• Carriers should build 
capabilities to address several 
questions:

• How is actual vs. expected vs. 
predicted developing and are the 
variations short or long termvariations short or long term 
trends? 

• Are they aberrations or something 
to worry about?

• Of the components of morbidity 
that are changing, what can be 
controlled? 

• And are our operational claims 
procedures structured to 
efficiently and effectively deal with 
those differences?

• Can we supply evidence of the
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What should be measured – Operational

• Carriers should build capabilities to 
address several questions:
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What should be measured – Operational

• What has the largest impacts on “LAE”, Quality, Customer Service, etc.?
• Resources
• Controls
• Process efficiency (timeliness, accuracy) 
• Quality
• Service

Explicitly define the process, the dates and linkages to reserving.  
Then express the formulas defining the periods…
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What should be measured – “External Lag”

70

80

90

100 Claims - Average Incurred to Notification (Days) 5 Year Monthly View

70

80

90

100 Claims – Average Incurred to Acknowledgement (Days) 5 Year 
Monthly View

30

40

50

60

70

Total

Expon. (Total)

30

40

50

60

Total

Expon. (Total)

0

10

20

20
07

01
20

07
04

20
07

07
20

07
10

20
08

01
20

08
04

20
08

07
20

08
10

20
09

01
20

09
04

20
09

07
20

09
10

20
10

01
20

10
04

20
10

07
20

10
10

20
11

01
20

11
04

20
11

07
20

11
10

20
12

01
20

12
04

20
12

07
20

12
10

20
13

01
20

13
04

20
13

07
20

13
10

0

10

20

20
07

02
20

07
05

20
07

08
20

07
11

20
08

02
20

08
05

20
08

08
20

08
11

20
09

02
20

09
05

20
09

08
20

09
11

20
10

02
20

10
05

20
10

08
20

10
11

20
11

02
20

11
05

20
11

08
20

11
11

20
12

02
20

12
05

20
12

08
20

12
11

20
13

02
20

13
05

20
13

08
20

13
12

Data Analytics / Predictive Modeling 10



What should be measured – Process 
Completion Times
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Summary

This is easy…right?
• Start with a consistent 

definition of measured terms 
combining both operational 
and financial measures

• Try to establish a “joint” 
working committee with g
finance, actuarial and 
operations representatives –
define a governance process

• Remediate operationalRemediate operational 
systems to capture the 
elements required   

• Develop a single repository 
with views that join andwith views that join and 
integrate actuarial/financial and 
operational requirements
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Predictive Modeling: Agenda

• What is Predictive Modeling?
• What are advantages over Traditional Analysis?g y
• What are GLMs?
• Why are GLMs used in Insurance?y
• Case Study: Incidence
• Limitations of Predictive ModelingLimitations of Predictive Modeling
• Conclusions
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What is Predictive Modeling?

• Predictive Modeling describes a statistical 
process that estimates the impact that a given 
set of independent variables (predictors) have in 
determining a specified dependent variable 
(response or target)(response or target)

• Predictors could be attained age, gender, 
marital status benefit period underwriting classmarital status, benefit period, underwriting class, 
duration, distribution channel, etc. Investors

• Response/Target could be claims incidenceResponse/Target could be claims incidence, 
probability that a claim is of a given type, 
probability of staying on claim
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Classical/Traditional Analysis

• Is generally understood by actuaries and others
• Gives useful information
• Is good for pattern recognition
• Is quick and easyq y
• Useful for benchmarking experience
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Limitations

But Classical/Traditional Analysis has weaknesses that can 
lead to inaccurate conclusions:

I bilit t d i f th ti t• Inability to remove random noise from the estimate
• No correction for distributional bias (doesn’t determine 

true effect of each factor)true effect of each factor)
• Requires significant volumes of data to create 

reasonable results with any level of sophistication
• Limited insight into interactions between variables
• No statistical framework that provides information about 

the certainty of results or the appropriateness of thethe certainty of results or the appropriateness of the 
analysis (i.e. which factors drive experience)

Predictive Modeling overcomes these limitations
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What are GLMs?

Generalized Linear Models (GLMs) are a flexible 
and sophisticated predictive modeling technique

=                       +   Response Signal Noise

y =  h(Combination of Predictors) +             Error

Link function (g=h-1) 
determines how 
factors are related

Reflects the variability 
of the underlying 
process and can be 

• Include variables that are 
predictive; exclude those that 
are not

any distribution within 
a broad family 
(exponential 
distributions)

• Simplify if full inclusion is not 
necessary

• Include combinations of 
predictors if necessary
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Why are GLMs used in Insurance?

• Their form makes them a natural choice for studying 
processes common in insurance
Th ll th bl di f t ti ti d i li t• They allow the blending of statistics and specialist 
knowledge in a transparent way

• GLMs have had widespread use in the P&C industry andGLMs have had widespread use in the P&C industry and 
are now being more widely adopted in Life, Annuity and 
LTC industries
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Case Study: Incidence

• We fitted a simple model to Industry incidence data

Incurred Age Marital Status

Gender
Duration

Calendar 
Year

Premium 
Class
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Case Study: Incidence

• Observed results (Substandard has lower incidence than 
Standard) are unintuitive
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Case Study: Incidence

• Standardizing by other factors in the model leads to a 
more intuitive result
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Case Study: Incidence

• Standardizing by other factors in the model shows that 
effect of duration is not as strong as indicated by 
observed resultsobserved results
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Case Study: Incidence

• We also investigated some simple interactions

Incurred Age Marital Status

Gender
Duration

Calendar 
Year

Premium 
Class
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Case Study: Incidence

• We also investigated some simple interactions

Incurred Age Marital Status

Gender
Duration

Calendar 
Year

Premium 
Class
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Case Study: Incidence

• Interaction between Incurred Age and Marital Status
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Why are GLMs used in Insurance?

• Basic output is of tables and vectors
• These are multiplied together to give expected incidence 

f i filfor a given profile
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Limitations of Predictive Modeling

• Like Classical/Traditional analysis, Predictive Modeling 
does not foretell the future
It l k f tt i hi t i l d t ith th• It looks for patterns in historical data, with the 
expectation that these patterns will repeat in the future

• Extrapolating those patterns into the future is just asExtrapolating those patterns into the future is just as 
problematic if the patterns come from Predictive 
Modeling, as if they come from Classical/Traditional 
AnalysisAnalysis
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Conclusions

• Predictive Modeling offers advantages over Traditional 
Analyses in terms of understanding what factors are 
driving behavior and how they drive itdriving behavior, and how they drive it

• These advantages are applicable to LTC
• As always, judgment is required if results are to beAs always, judgment is required if results are to be 

extrapolated
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Don’t forget to fill out the survey
1st you must have download the ILTCI Mobile App 

- Go to your app store; search ILTCI.  It’s free.   

1. Find the session
2. Scroll to the 

bottom
3. Tap on the 

session name 
below the survey 

Tap on the 
answer you wish 
to submit

Click Next

Your session Name HereYour session Name Here


