

Data Analytics / Predictive Modeling

March 23, 2015 Matthew Morton, LTCG Dan McCoach, Pricewaterhouse Coopers Ben Williams, Towers Watson

15th Annual Intercompany Long Term Care Insurance Conference

Agenda

- Introductions
- LTC Dashboard: Data Analytics
- Predictive Modeling

Data Analytics

March 23, 2015 Dan McCoach, Pricewaterhouse Coopers

15th Annual Intercompany Long Term Care Insurance Conference

Data Analytics

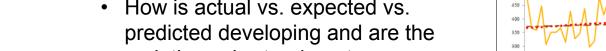
- Who is watching
- What to measure
- How frequently
- When to act on changes
- How PM can help identify outliers
- How PM can measure deviations
- Metrics that can be measured.

Who is watching?

- Senior Management
- Stakeholders
- Investors
- Regulators

What should be measured?

- Broadly speaking LTC carriers should monitor:
 - 1. Operational performance in the following areas:
 - Administration
 - Claims, specifically:
 - Risk profiling
 - Morbidity monitoring
 - 2. Financial performance:
 - The drivers of corporate reporting, such as Source of Earnings (SoE)
 - Rate activity
 - Reserve analysis
 - Expenses
 - Underwriting and sales
 - Investment performance



trends?

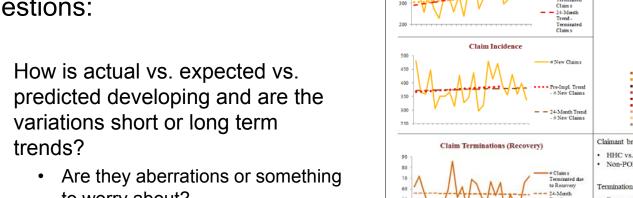
Carriers should build

questions:

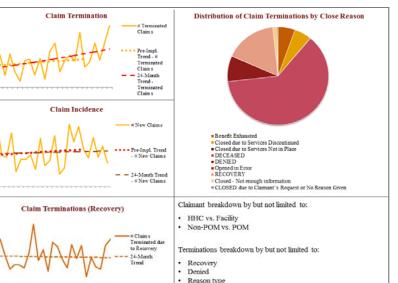
- Are they aberrations or something to worry about?
- Of the components of morbidity that are changing, what can be controlled?

capabilities to address several

- And are our operational claims procedures structured to efficiently and effectively deal with those differences?
- · Can we supply evidence of the efficacy of those controls?



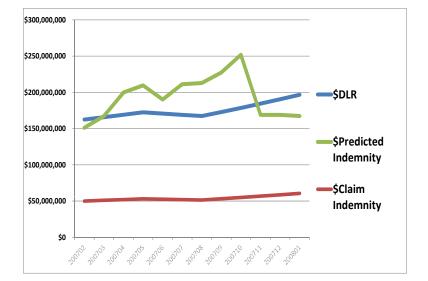
What should be measured – Operational

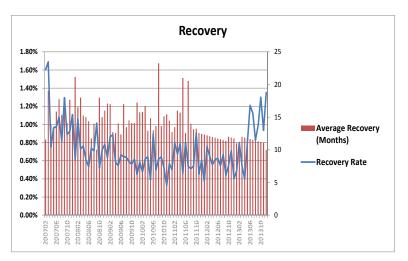


* Pot of Money benefit feature encourages conservation of benefit over time

What should be measured – Operational

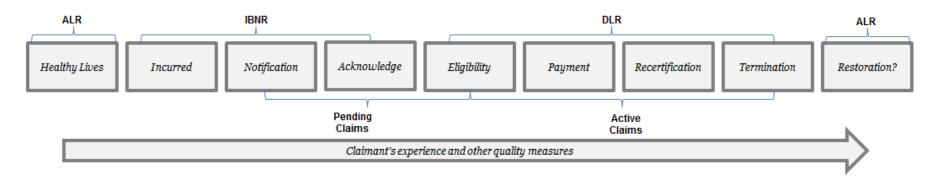
- Carriers should build capabilities to address several questions:
 - How is predicted indemnity tracking to booked DLR and Indicated Claim Indemnity?
 - Are claim terminations higher or lower than expected? What types of terminations are occurring?
 - How are paid claims performing compared to expected for the period? And what is the reason for variance?
 - Utilization, lower claim terminations, increased incidence, or a combination of these reasons?
 - Did the claim results vary by product feature? For example, claims with an inflation benefit or "non pot of money"*





What should be measured – Operational

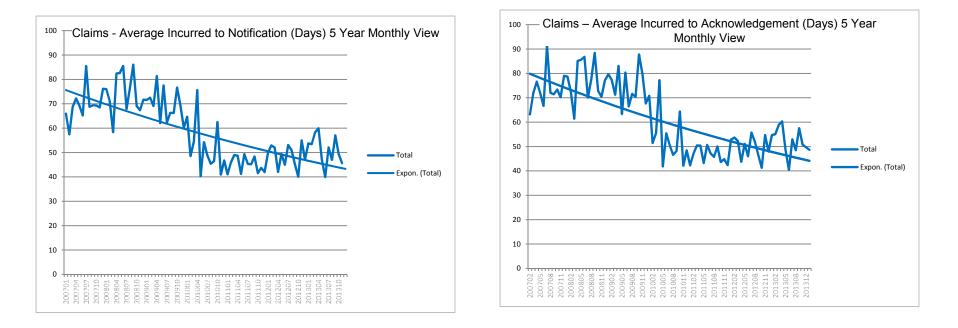
- What has the largest impacts on "LAE", Quality, Customer Service, etc.?
 - Resources
 - Controls
 - Process efficiency (timeliness, accuracy)
 - Quality
 - Service



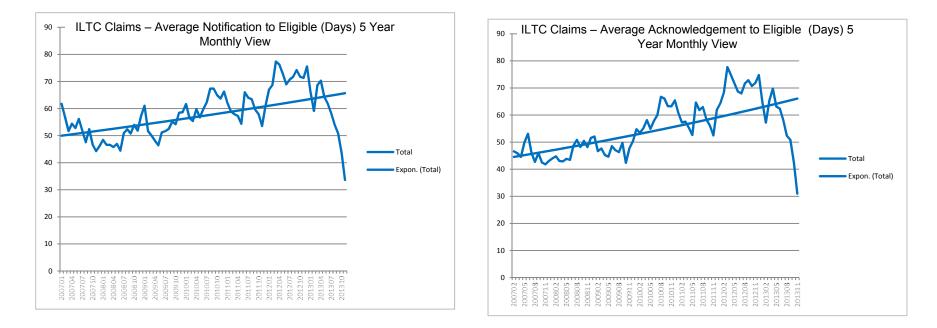
Explicitly define the process, the dates and linkages to reserving. Then express the formulas defining the periods...

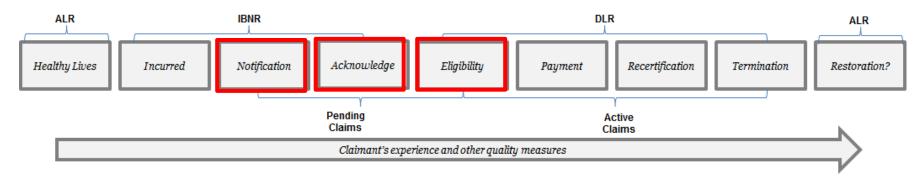
ILTC

What should be measured – "External Lag"



What should be measured – Process Completion Times



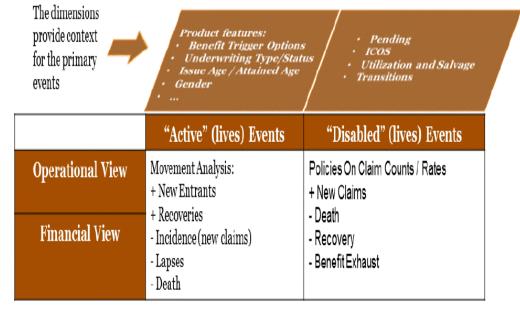


Data Analytics / Predictive Modeling

Summary

This is easy...right?

- Start with a consistent definition of measured terms combining both operational and financial measures
- Try to establish a "joint" working committee with finance, actuarial and operations representatives – define a governance process
- Remediate operational systems to capture the elements required
- Develop a single repository with views that join and integrate actuarial/financial and operational requirements



Predictive Modeling

March 23, 2015 Ben Williams, Towers Watson

15th Annual Intercompany Long Term Care Insurance Conference

Predictive Modeling: Agenda

- What is Predictive Modeling?
- What are advantages over Traditional Analysis?
- What are GLMs?
- Why are GLMs used in Insurance?
- Case Study: Incidence
- Limitations of Predictive Modeling
- Conclusions

What is Predictive Modeling?

- Predictive Modeling describes a statistical process that estimates the impact that a given set of independent variables (predictors) have in determining a specified dependent variable (response or target)
- **Predictors** could be attained age, gender, marital status, benefit period, underwriting class, duration, distribution channel, etc. Investors
- Response/Target could be claims incidence, probability that a claim is of a given type, probability of staying on claim

Classical/Traditional Analysis

- Is generally understood by actuaries and others
- Gives useful information
- Is good for pattern recognition
- Is quick and easy
- Useful for benchmarking experience

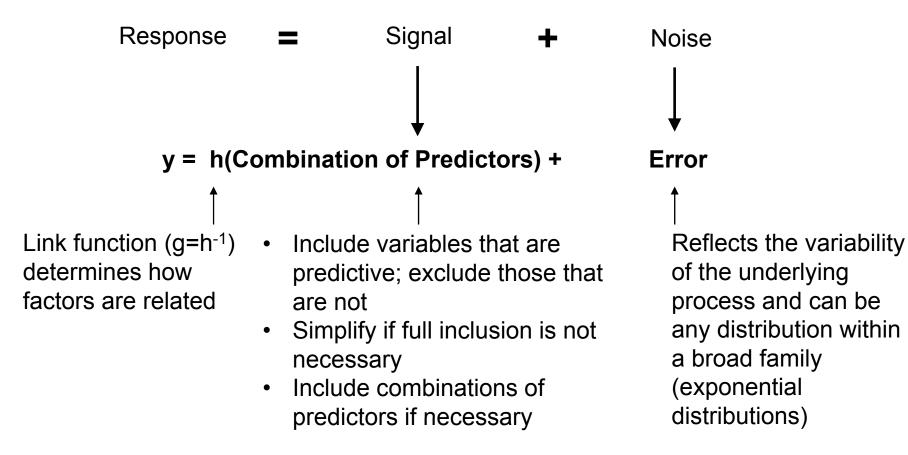
Limitations

But Classical/Traditional Analysis has weaknesses that can lead to inaccurate conclusions:

- Inability to remove random noise from the estimate
- No correction for distributional bias (doesn't determine true effect of each factor)
- Requires significant volumes of data to create reasonable results with any level of sophistication
- Limited insight into interactions between variables
- No statistical framework that provides information about the certainty of results or the appropriateness of the analysis (i.e. which factors drive experience)

Predictive Modeling overcomes these limitations

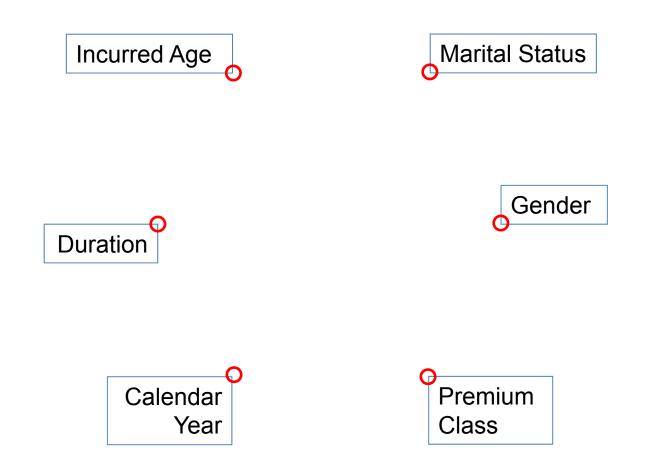
Generalized Linear Models (GLMs) are a flexible and sophisticated predictive modeling technique



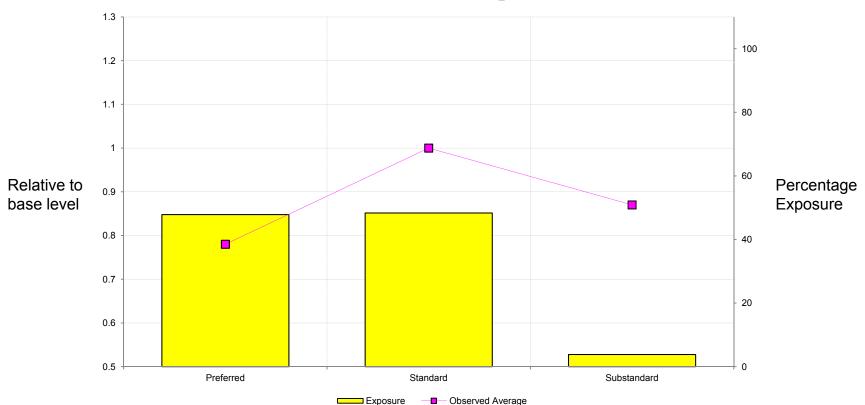
Why are GLMs used in Insurance?

- Their form makes them a natural choice for studying processes common in insurance
- They allow the blending of statistics and specialist knowledge in a transparent way
- GLMs have had widespread use in the P&C industry and are now being more widely adopted in Life, Annuity and LTC industries

• We fitted a simple model to Industry incidence data



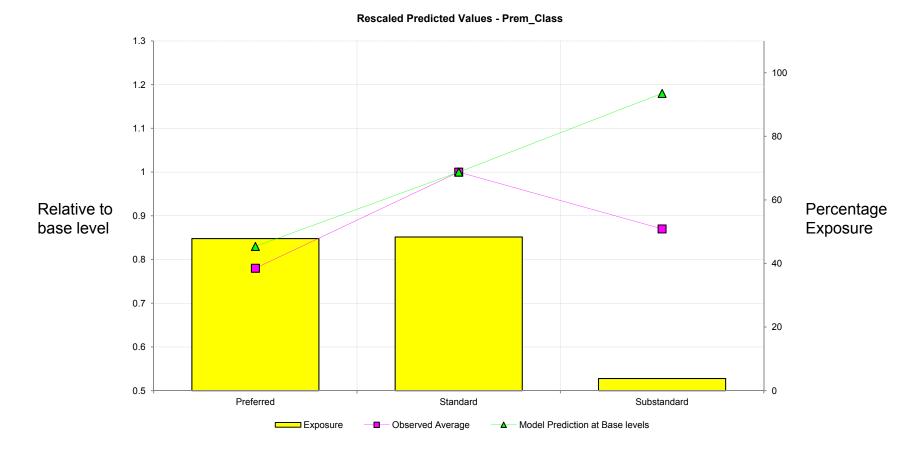
 Observed results (Substandard has lower incidence than Standard) are unintuitive



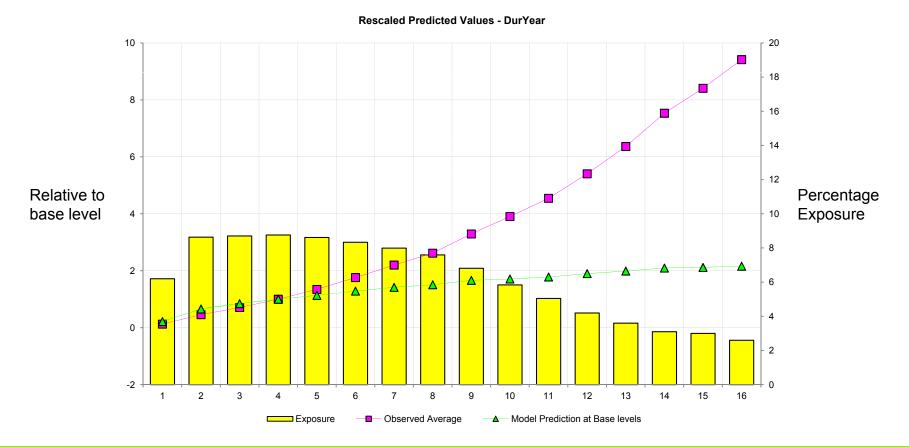
Rescaled Predicted Values - Prem_Class

Data Analytics / Predictive Modeling

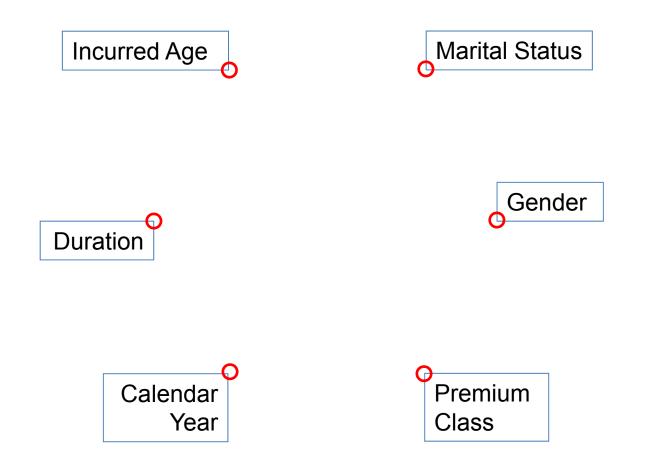
Standardizing by other factors in the model leads to a more intuitive result



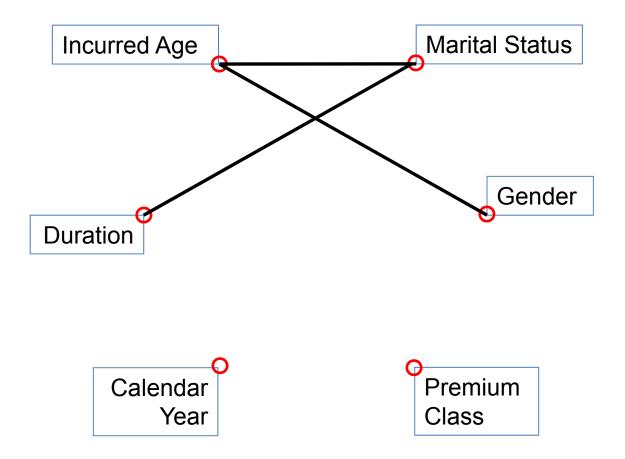
 Standardizing by other factors in the model shows that effect of duration is not as strong as indicated by observed results



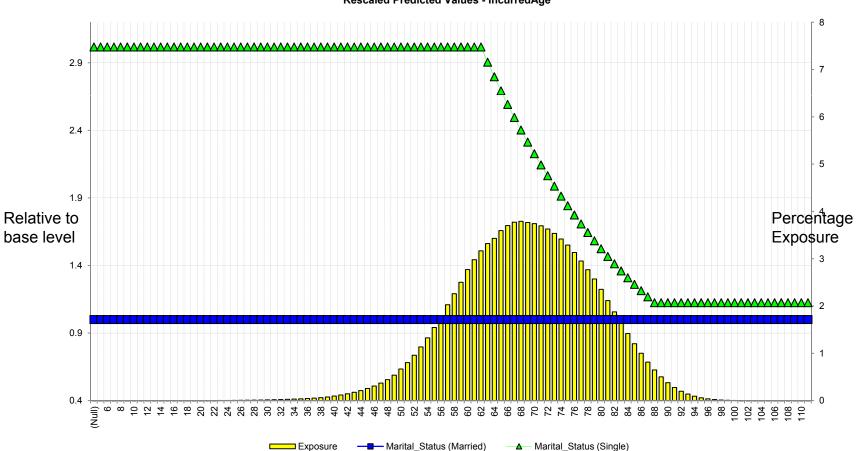
• We also investigated some simple interactions



• We also investigated some simple interactions



Interaction between Incurred Age and Marital Status •



Rescaled Predicted Values - IncurredAge

Data Analytics / Predictive Modeling

Why are GLMs used in Insurance?

- Basic output is of tables and vectors
- These are multiplied together to give expected incidence for a given profile

Base		0.0018							
Gender * IncurredAge				DurYear		Marital_Status		Prem_Class	
		Gender		Dunkara		Manifed States		Durant Class	
		Female	Mala	DurYear		Marital_Status Married	1.0000	Prem_Class Preferred	0.7800
IncurredAge	25	0.2306		1	0.2391	Single	1.3799	Standard	1.0000
IncurredAge	36	0.2300		2	0.2331	Single	1.3735	Substandard	1.2050
	30			3				Substandard	1.2050
	37	0.4799		4	0.8754				
	38 39	0.4019		5	1.0000				
	39 40	0.3335		6	1.0973				
	40 41	0.0902		6 7	1.1993				
		0.2187		/	1.2748				
	42	0.1170		8	1.3023				
	43	0.2816		9	1.3835	Incidence:	=D2*E24*H20*K8*N9	9	
	44	0.1519		10	1.3775				
	45	0.2467		11	1.3779				
	46	0.1252		12	1.4146				
	47	0.2470	0.0704	13	1.4276				
	48	0.1695	0.1180	14	1.4555				
	49	0.2775	0.2222	15	1.4211				
	50	0.2487	0.1840	16	1.4073				
	51	0.2750	0.1164	17	1.3820				
	52	0.2644	0.2192	18	1.3269				
	53	0.2700	0.1705	19	1.2720				
	54	0.3547	0.1437	20+	1.2688				
	55	0.3385	0.2185						
	56	0.3094	0.2321						
	57	0.3579	0.2915						

Limitations of Predictive Modeling

- Like Classical/Traditional analysis, Predictive Modeling does not foretell the future
- It looks for patterns in historical data, with the expectation that these patterns will repeat in the future
- Extrapolating those patterns into the future is just as problematic if the patterns come from Predictive Modeling, as if they come from Classical/Traditional Analysis

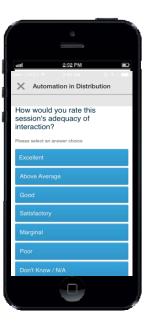
Conclusions

- Predictive Modeling offers advantages over Traditional Analyses in terms of understanding what factors are driving behavior, and how they drive it
- These advantages are applicable to LTC
- As always, judgment is required if results are to be extrapolated

Don't forget to fill out the survey

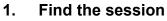
1st you must have download the ILTCI Mobile App - Go to your app store; search ILTCI. It's free.

>



Tap on the answer you wish to submit

Click Next



- 2. Scroll to the bottom
- 3. Tap on the session name below the survey

Your session Name Here