

American Academy of Actuaries PBR Committee

Overview and Update Presented by: AI Schmitz March 2015

ILTC**I**

15th Annual Intercompany Long Term Care Insurance Conference

LTC Principle Based Reserves

- Agenda
 - Why Consider PBR for LTC?
 - Why Use a Stochastic Approach?
 - Objective of Project
 - History and Work to Date

LTC Principles Based Reserves

- Why Consider PBR for LTC?
 - NAIC Request
 - History of Academy Committee
 - Life Insurance
 - Health Insurance

LTC Principle Based Reserves

- Why a Stochastic Approach?
 - Better model / better measure of potential risk?
 - Better understanding of potential results
 - Hope that it will assist in measuring and managing the risk in LTC

- Based on the initial request from the NAIC, the objective of the work group is to develop a prototype stochastic model to be used to help set the direction of PBR for LTC
 - Prototype Model
 - Conceptual Framework
 - Model Block of Inforce
 - Include Variability of Major Risks
 - Excel
 - Guide Only

History and Work To Date

- Stochastic Modeling key variables: morbidity, lapse, mortality, interest
- II. Modeling Approach morbidity, mortality, and lapse in Excel prototype using "Hazard Rate Approach"
- Modeling Considerations premium rate changes, interest rate impact, morbidity / mortality changes, margins
- IV. Assumptions and Data collection sample assumptions developed by committee, two inforce files provided by two companies.
- v. Stochastic and Deterministic Results

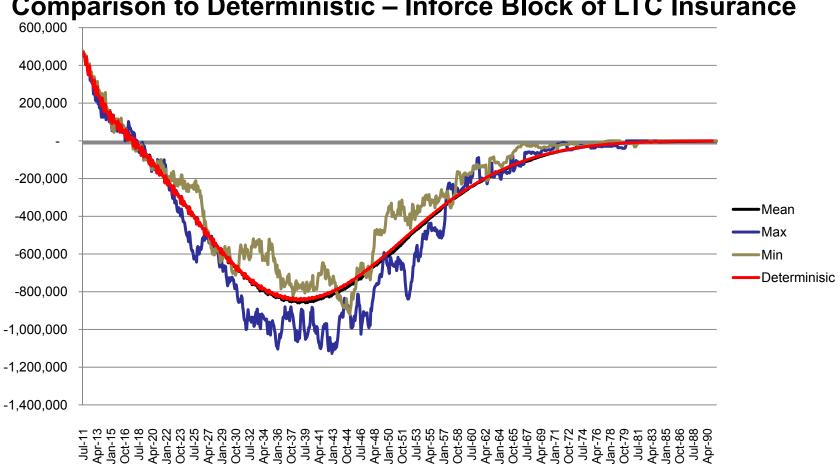
Model Description

- Excel Based Stochastic Model Using "Hazard Rate Approach"
 - When policyholder will have an event

- What the event is (Lapse, Death, Incidence)

- If event is an incidence when will next event occur
- What is the event (Recovery, Death)

- if recovery



- Prototype Model Assumptions
 - "Reasonable" is important, but focus on the model and interactions
 - High Level Estimates from Committee
 - SOA Intercompany Data
 - No morbidity or mortality improvement in base run
 - No rate increases in base run

Calibration

Comparison to Deterministic – Inforce Block of LTC Insurance

Sample block of 6,000 policies

Stochastic Modeling

Distribution Characteristics of PV of Cash Flow @ 4%

- Mean 87 m
- Maximum 106 m
- Minimum 72 m
- Std Dev 5.261 m
- Skewness 0.138209
- Kurtosis 0.168010

Initial Results

• Sample block of 6,000 LTC insurance policies, CTE calculations

CTE 0 (GPV)	87m	100.0%
CTE 10	88m	101.2%
CTE 20	89m	102.1%
CTE 30	90m	102.9%
CTE 40	90m	103.8%
CTE 50	91m	104.8%
CTE 60	92m	105.8%
CTE 70	93m	107.1%
CTE 80	95m	108.6%
CTE 90	97m	110.8%
CTE 95	98m	112.8%
CTE 99	103m	117.8%

Note: CTE 90, for example, is equal to the average of the worst 10% of scenarios, each scenario cash flows discounted at 4%

Stochastic Modeling

Initial Results

Distribution Characteristics of PV of Cash Flow @ 4%

AAA PBR LTC Model Runs					
	Base	Incidence Plus 10%	Incidence Minus 10%	Active Mortality Minus 10%	
Mean	87,130,339	99,228,164	74,036,463	94,746,011	
Max	106,262,080	117,344,432	92,581,823	110,851,459	
Min	72,487,960	80,432,369	59,192,117	80,400,667	
Skewness	0.138	0.058	0.210	0.089	
Kurtosis	0.168	-0.146	0.278	-0.050	
Std Dev	5,261,055	5,638,591	4,949,694	5,292,701	
Std Dev / Mean	6.0%	5.7%	6.7%	5.6%	
CTE 0	100.0%	100.0%	100.0%	100.0%	
CTE 10	101.2%	101.1%	101.3%	101.1%	
CTE 20	102.1%	102.0%	102.3%	101.9%	
CTE 30	102.9%	102.8%	103.2%	102.7%	
CTE 40	103.8%	103.7%	104.2%	103.6%	
CTE 50	104.8%	104.5%	105.3%	104.4%	
CTE 60	105.8%	105.5%	106.4%	105.4%	
CTE 70	107.1%	106.6%	107.8%	106.5%	
CTE 80	108.6%	108.1%	109.5%	108.0%	
CTE 90	110.8%	110.2%	112.3%	110.1%	
CTE 95	112.8%	111.7%	115.0%	111.8%	
CTE 99	117.8%	114.7%	119.9%	115.1%	

Next Steps

- Summary Report
- Model Improvements
 - Stochastic Considerations
 - Management Actions
- Role in Reserve Calculations

Stochastic Model Construction

Paul Morrison, ASA MAAA ACIA RGA International Corporation

15th Annual Intercompany Long Term Care Insurance Conference

Agenda

- Choices
- Construction
- Considerations

Choices

- What are the random events?
 - Claim
 - Lapse
 - Death
 - Salvage
 - Inflation
 - Interest
 - Any Others?

- Claim
 - ADL by ADL?
 - Cognitive vs. ADL?
 - Probability Functions
 - Are these single decrement or multiple?
 - Are these independent?
 - Are the benefits different?

- Lapse
 - Reasonable data sources today
 - Policy termination value (e.g. CSV, RoP)
 - Non-forfeiture
 - NAIC maximums
 - Is lapse no longer random?

- Death
 - Life actuaries chose not to bother with death
 - Should we?
 - Active lives have different rates than impaired
 - Have we studied the difference?
 - NAIC tables
 - Is death no longer random?

- Salvage
 - Must align with choice of random claim event
 - Affected by coverage level
 - Affected by region

- Inflation
 - Benefit Impact
 - Interest Rate Impact
- Interest
 - Real vs. Nominal
 - Highly Intensive Theoretically and Computationally
 - Well Accepted Models (e.g. Hull White)

- Any others?
- What about non-random events?
 - Management Action
 - Regulatory Action

ILTCI

Construction

- Homegrown
 - Actuarial expertise
 - Programming expertise
 - Database expertise
 - Hardware expertise
- Packages
 - Vendors

- Actuarial expertise
 - Contingencies and their distributions
 - Contingent and non-contingent cash flow

- Programming expertise
 - Implementation of calculation formulae
 - Code libraries
 - Code reviews
 - Testing
 - Change management

- Database expertise
 - Usually a vendor supplied package
 - Internal limitations
 - Set up, maintenance and use require different sets of skills
 - What data is stored?
 - How is data stored?
 - Who will be extracting information from the database?
 - What query language(s)?
 - Input and/or Output

- Hardware expertise
 - Grid computing
 - LAN storage
 - Capacity planning

Construction - Packages

ILTCI 15

- Vendors
 - Numerous
 - Helpful
 - Not necessarily dedicated to LTC
 - Not necessarily dedicated to stochastic the way you might have chosen in earlier slides
 - Could be least expensive option
 - Just down the hall!

Stochastic Modeling

Considerations

- Difficulty of validation
- Set tolerances for data
- Run time issues
 - Programming shortcuts
 - Algorithm shortcuts
 - Modeling section

Considerations – Difficulty of validation

- Deterministic
 - The first thing to check
- Reconcile outliers
 - Is it a real possibility?
- Test boundaries
 - What is the most extreme?

- ETL Step
 - Blanks
 - Zero
 - 9999
- Calculation Step
 - Assumptions
 - Overflow/Underflow
 - Logical comparisons

- Storage Step
 - Trimming fields to save space
- Query Step
 - Timeout for any one query
 - Progress bar
 - Size of output record
 - Size of output table

Considerations – Run time issues

- Programming shortcuts
 - Each language has different shortcuts
 - Variants/Arrays
 - RAM vs. Disk

Considerations – Run time issues

- Algorithm shortcuts
 - Random walk step sizes/convergence
 - Mean reversion
 - Time/Type of event
 - Time epoch

Considerations – Run time issues

- Modeling section
 - Newest SoA section
 - Growing quickly
 - Many concurrent discussions
 - Actuaries don't know everything

Volatility in Long-Term Care Insurance: Implications for PBR

Presented by: Rachel Brewster March 2015

15th Annual Intercompany Long Term Care Insurance Conference

Volatility

- High volatility is driven by:
 - Future LTCi experience cannot be predicted with a great deal of confidence, especially over the distant future
 - Claim data is usually limited for many years after policy issue due to relatively low claims experience
- Effect of volatility should be reflected through a provision for risk and uncertainty (PR&U)

- Process Risk
 - Should PR&U reflect homogenous and independent risks since they can be eliminated by insuring sufficiently large numbers of insureds?
 - Issues with LTCi
 - Stability of Conditions
 - Efficiency of Insurance markets
 - Uncertainty of factors that impact experience

Components of Risk & Uncertainty

- Parameter Risk: Parameters are incorrect
 - Estimation Risk
 - Exposure Risk
 - Future uncertainty Paradigm Shifts
- Model Risk
 - Over simplification
 - Under specification

Desirable Characteristics of PR&U

- 1. Consistent with applicable regulatory framework;
- 2. Consistent with sound insurance pricing practices, regulatory solvency principles, and actuarial standards;
- 3. Practical, understandable, and straightforward;
- 4. Transparent, auditable and verifiable;
- 5. Not over-reliant on subjective inputs;
- 6. Use current estimates;
- 7. Consistent among insurers with similar business and between insurance coverages, if practical;
- 8. Consistent over entire lifetime of the policy and between generations of products.

Measurement Methods

- Quantile Methods
 - Confidence levels
 - Conditional tail expectation
 - Moment Methods
- Explicit Assumptions
 - Independent risks
 - Correlation of risks
 - Aggregate methods

Scenarios to Consider

- Sources of Risk / Assumptions
 - Lapse
 - Mortality (Before & After Claim)
 - Claim Incidence
 - Utilization
 - Interest

Scenarios to Consider

- How do these assumptions interact?
 - Expectations with mortality improvement
 - Prior to claim
 - Post claim
 - Changes in Alzheimers or Dementia
 - Impact of a cure
 - Impact of higher incidence

Future Considerations

- Risk Mitigation Impacts of Product Design
 - Higher Co-pays: More significant cost sharing
 - Longer Elimination Periods
 - Shorter Benefit Periods
 - Improvements to 'Use it or Lose It' design

Q & A

Stochastic Modeling

Don't forget to fill out the survey

Find the session

Scroll to the bottom

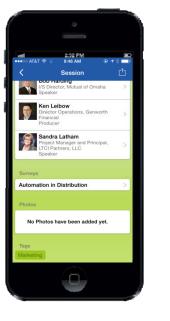
Tap on the

session name below the survey

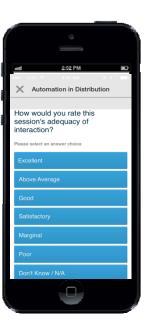
Your session Name Here

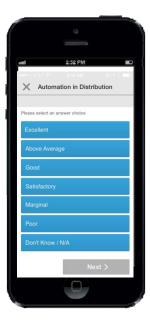
1.

2.


3.

Surveys


1st you must have download the ILTCI Mobile App - Go to your app store; search ILTCI. It's free.



>

Tap on the answer you wish to submit

