

Data Analytics / Predictive Modeling Seminar Part 2

Matthew Morton FSA, MAAA Ben Williams

16th Annual Intercompany Long Term Care Insurance Conference

Agenda

- Introduction
- Overview of Seminar
- "Traditional" Experience Study
- "Traditional" vs. "Predictive Modeling"
- Types of Predictive Modeling

Welcome to the first ever

ILTCI Predictive Modeling Seminar

Three part series providing an in depth introduction to predictive modeling

<u>Agenda</u> Sunday; Part 1: Background **Monday; Part 2: Conference session** Wednesday; Part 3: Hands on experience

Overview of Seminar

Goal of this Session

Determine goal

Data and reasonability review

- Summary of business (demographics)
- Completeness
- Financial reconciliation
- Volume of information
- Granular cell checks or audits

Assumption development / review

- Source of information
 - Company data
 - Industry data
 - Population data
 - Actuarial judgment
- Methodology & analysis toolset
- Degree of rigor

Assumption development / review

- Example Incidence Develop from data
- One approach
 - Develop ultimate attained age curve
 - Adjust for policyholder and benefit characteristic
 - Test to ensure fit...
 - Repeat.. test to ensure fit
 - Repeat.. test to ensure fit

Validation of Assumptions

- Reasonability
- Tests
 - Actual to expected analyses
 - Retrospective adequacy
 - Dynamic validation to projection
 - Key metric review
- Comparison to prior

Data Analytics / Predictive Modeling Seminar Part 2

 What inhibits a traditional modeler from using predictive modeling

- Will PM help with the following questions:
 - Will it tell me what I don't know?
 - Would PM tell me what to assume in places we don't have data?
 - How should we handle an RPU?
 - Will it tell me what to assume for cost of care in 40 years?

Easy Answer: NO

What is Predictive Modeling?

• We have a series of historical observations showing how input variables x (independent variables) are related to responses y (dependent variables) by some process

- A predictive model is some function of the independent variables that mimics this process
- Predictive Modeling is the process of developing a predictive model

What is Predictive Modeling?

- There are two goals in fitting a predictive model
 - Prediction: to be able to predict responses for future input variables x
 - Information: to understand the process that associates response variables with input variables
- Note: Just the same as the goal of developing an assumption!!!

How is Predictive Modeling different from Traditional Analysis?

- Traditional Analysis assumes a model structure, and compares Actual vs Expected (according to the model) on a one-way or a twoway basis. The model is iteratively modified (independent variables added or parameters changed) to improve the fit on this basis
- Predictive Modeling doesn't force parameters to take certain values*
- Predictive Modeling uses statistics** to determine which independent variables should be included, and what parameters they should take

*But it can **And potentially other tests

- Why do Predictive Modeling?
- Remember our goals in fitting a predictive model
 - Prediction: to be able to predict responses for future input variables x
 - Information: to understand the process that associates response variables with input variables
- Predictive models can give
 - Better predictions of responses
 - A better understanding of the process

Better predictions?

- How do we show this?
- When modeling, we split the available data into two sets, training and testing
- We fit models on the training data
- Apply both of these models to the testing data

Better predictions?

 We can see which of the models gave predictions closer to the observed response

Data Analytics / Predictive Modeling Seminar Part 2

Better understanding of the process?

- Predictive modeling tells us
 - Which factors <u>need</u> to be in a model according to some combination of criteria
 - The <u>true</u> effect of each independent variable included in the model (which can be different from the actual oneway effect, or the ratio of the actual to expected effects on a oneway basis, as it takes into account correlations between variables)
- (Arguably) not all predictive modeling methods will give a better understanding of the process (black box)

There are many types of predictive model

- Regression
- Decision Trees
- Neural Networks
- Genetic Algorithms
- Support Vector Machines
- K-nearest Neighbors

Many of these have different varieties. For example, Regression includes

- Ordinary Linear Regression
- Generalized Linear Models (GLM)
- Ridge regression
- Lasso
- Elastic Net

Regression

- The expected value of independent variable Y for a given combination of levels of dependent variables X is a function of X
- Fitting this kind of model involves determining the structure of the model function and solving for the parameters
- Outcome is a list of model parameters that have to be combined in some way (e.g. multiplicatively)

Regression

• Example output of a Regression model (a GLM)

Base	0.0004												
Gender		Incurred Age		D	uration		Marital S	Status		Premiur	n Class		
Female	1.0000	35-	0.1171	1	1.000)	Married	1.0000		Preferre	d	0.8682	
Male	0.7560	36	0.1326	2	1.4224	1	Single	2.1227		Standar	d	1.0000	
		37	0.1484	3	1.8732	2				Substan	dard	1.1006	
		38	0.1641	4	2.309	5							
		39	0.1796	5	2.693	3							
		40	0.1947	6	2.998	1							
		41	0.2092	7	3.213	5							
		42	0.2231	8	3.3414	1							
	Base		Gender		Incurred Age		Duration		Marital Status		Premium Class		Expected Mortality
													(per '000)
			Male		51	51		5		Single		referred	
	(0.0004		0.7560		0.3293		2.6933		2.1227		0.8682	0.4775
		51	0.3293	1	7 2.758	3							
		52	0.3425	1	8 2.656	L							
		60	0 9570		0 2 5 4 7	1							

Data Analytics / Predictive Modeling Seminar Part 2

Regression

- Example: they can allow us to make statements like (all else being equal)
 - Incidence is 10% higher in single than married people
 - Duration impacts on incidence in a certain way
- Pros:
 - Flexible, easy to interpret and to explain
 - The result is a formula (which can be turned into a table)
- **Cons:** do not give good results if data is highly nonlinear (to some extent this can be overcome)

Generalized Linear Model (GLM)

- Has three components
 - An error distribution coming from the exponential family
 - A linear predictor function of dependent variables
 - A link function, which relates the linear predictor to the expected value of the response
- Parameters typically found by minimizing L = negative log likelihood for model structure
- Model structure developed by experiment (can be automated to some extent)
 - Factors are added, removed, combined and simplified, and statistics related to the fit of the model are studied
 - Not dissimilar to development of assumptions by traditional method, but aided by statistics

Generalized Linear Model (GLM)

- Widely used in P&C insurance for the reasons given previously (flexible, easy to interpret and to explain)
- GLMs will be used in the workshop after the conference to fit a model of incidence

Penalized Regression

- Same model form as GLM, but parameters β are estimated differently
- Function minimized to find parameters is L + λ .Penalty(β)
 - $\lambda = 0$ means GLM
 - λ = infinity makes all parameters 0
 - Necessary to choose "best" value of λ
- Ridge Regression and Lasso have different penalty functions which lead to different properties
 - For example, Lasso is useful for understanding variable importance, useful when number of variables is large
- Elastic Net combines the penalty functions of Ridge Regression and Lasso

Decision Trees

- Determines a series of rules based on values of the independent variables that segment the data
- The process is recursive
- It stops when no further splitting will improve results, or some stopping condition is satisfied

Passengers of the Titanic

Decision Trees

Pros

- Outcome is a set of rules applying to different segments (easy to interpret, explain, and order)
- Good for identifying high-dimensional features of data, as in the Titanic example (and these features can be used as variables in other modeling techniques)

Cons

 Highly dependent on the data, and therefore doesn't give predictions as good as some other techniques

Generalizations of Decision Trees

- To overcome this issue, generalizations of Decision Trees exist, such as
 - Random Forests
 - Gradient Boosted Trees
- These are examples of <u>ensemble methods</u>, which use combinations of different underlying models

Random Forests

- Roughly speaking, this involves
 - Taking a large number of random samples of the data (with replacement)
 - Fitting a simple tree on each sample
 - The model is an average of these trees

•The idea is that the combination of simple trees avoids overfitting to the data, and is more predictive than the single tree

- Output is a complex set of rules
- They can give very good predictions, but interpreting the model can be complicated (some people would argue with this statement)

Gradient Boosted Trees

- Roughly speaking, this involves
 - Fit a simple tree on a random sample of the data
 - On another random sample
 - Calculate predictions according to previous tree
 - Calculate model residuals
 - Fit another simple tree on the residuals
 - Repeat the process
- Output is a complex combination of sets of rules
- They can give very good predictions, but interpreting the model can be complicated (some people would argue with this statement)

Support Vector Machines

- Hyperplanes in high-dimensional space separate observations into different groups by
- Each different group gets a different prediction

Support Vector Machines

 Modeling involves implicitly transforming data to aid search for hyperplanes, as below (red means low risk, black means high risk)

After transformation

• Problem becomes more difficult as more dimensions are added

Neural Networks

- Inspired by biological neural networks (e.g. the brain)
- Predicted values calculated in stages by passing through a network of layers
- Value of a node given by a weighted sum of values in the layer before, transformed by a non-linear activation function
- Number/size of hidden layers chosen during modeling
- Weights estimated to minimize a loss function (e.g., negative log-likelihood)
- Can give very good predictions, but interpretation can be complicated (some people would argue with this statement)

Summary

- The goals of Predictive Modeling are the same as traditional assumption setting
 - Making predictions of future outcomes
 - Understanding the process
- Predictive Modeling <u>can</u> give demonstrably better results than traditional techniques
- There are many predictive modeling techniques
- Predictive Modeling is not necessarily a Black Box

- Possible Long Term Care Applications
 - Traditional actuarial assumption development
 - Incidence
 - Length of stay
 - Utilization
 - Lapse
 - Mortality (active vs disabled)
 - Could we determine other uses?

- Possible Long Term Care Applications
 - Underwriting
 - Can we quantify the most critical aspects of the UW process?
 - Could we determine better early knockout questions?
 - Could we determine who qualifies using less questions?
 - Claim intake
 - Can we quantify the most critical data collection to pay a claim?
 - Could we determine the right claims to manage closely?

Questions?

Data Analytics / Predictive Modeling Seminar Part 2

