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Disclaimer é’

The data used in this seminar is fictitious, and it or results
of analyses based on it should not be relied upon for any
purpose
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Agenda of the Seminar

1. Background to the Workshop

2. Predictive Modeling and Applications to Long Term
Care Insurance

3. Predictive Modeling of Long Term Care Incidence
using Generalized Linear Models in Emblem
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Intfroduction

Where have we come from and why are we here?

During the conference we discussed how predictive modeling
offers alternatives to traditional techniques for developing
assumptions

These alternative techniques can give more accurate
predictions, and give better insight into the process being
modeled

On Sunday we ensured that you have access to Towers
Watson Emblem, gave background on GLMs, and carried out
exploratory data analysis

In today’s session we will fit a Generalized Linear Model
(GLM) on the same LTC Incidence Data, using Towers
Watson Emblem
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Agenda of today’s workshop

* Introduction/Recap

 Partitioning data between modeling/validation, selecting
model structure and implications (15 mins)

 Fitting a starting model and interpreting results (30 mins)
« Assessing additional factors for inclusion (45 mins)
 Investigating interactions (30 mins)

« Simplifying factors using groups and curves (1 hour)

« Validating assumptions and modeling decisions (30
mins)

« Testing/comparing predictiveness of model/s (30 mins)

« Conclusion and Q&A (<1 hour)
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Introduction/Recap

There are two goals in fitting a predictive model
» Prediction: to be able to predict responses for future input variables

» Information: to understand the process that associates response
variables with input variables
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Partitioning data between modeling/validation sets e’

 We fit the model on one subset of the data
(modeling/training data)

* We keep another subset of the data
(testing/validation/hold-out data) in reserve to
— test predictiveness of the model
— compare the predictiveness of different models

 More on this later

 In this example, we will model on a random three
quarters of the data, and use the remaining quarter for
validation




Statistical Background to GLMs

GLMs (Generalized Linear Models) are characterized as follows:

Response Systematic Random
Variable o Component + Component

l /

y = h(Combination of Factors) +  Error

T “ N

g=h-1is called the LINK Error should reflect
function and is chosen to reflect underlying process and
the signal most accurately comes from the

exponential family
Combination of factors is
the model structure

[LTC]
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Statistical Background to GLMs

« Generally accepted standards are good starting points
for link functions and error structures

Frequency/Mortality/Incidence

Pure Premium Tweedie
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Selecting model structure and implications §5

« We will be using Log link function and Poisson error
structure
— Conceptually this means that we are modeling events per unit
time
— This is a standard choice for modeling claims frequency in P&C
insurance and has been used for LTC incidence

* A consequence of this is that the model is multiplicative




Selecting model structure and implications é’

« We define training and testing data and model link and
error structure on the “Specify Emblem Model” window:

- -
Specify Emblem Model -

—Link Function —Errar Structure —Sample Set
" Identity £ Mormal
 ing i+ Poisson e
{~ Redprocal " Gamma ¢ Undefined
" Exponential ™ User Defined (Tweedie) G ndeFined
Alpha : Iu— Variance Power Function: .
. Iz— Im " Undefined
" Logit ¢ Einomial " Undefined
" Probit {~ Megative Binomial " Undefined
" Complementary Log-Log  Undefined

Scale Parameter Basis
’7 " Deviance * Pearzon " Fixed at 1 Define |

| Range of Data Values: [0.0 to 4.0]

0K Cancel |
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Fitting a starting model

« There are various ways to choose a starting model

* These include
— Include variables from an existing assumption
— Include variables you suspect will be predictive
— Stepwise Regression
— Another analysis, such as CART, to rank “importance” of factors

« We will start from a one variable model (DurYear)

— This is not standard, but allows us to explain a few basic
concepts




Basic Concepts

%

« The Graph toolbar contains buttons which allow the user
to customize the graph for the selected variable

Toggle to show average
observed values

Toggle to view predicted
value (linear predictor
shown when off)

et ~\

Toggle to view the current
model average fitted values

& |dMh| obs CM cp./

base level

Toggle to rescale lines to

N

Toggle to show the current

model




Basic Concepts: Observed (Actual) §5

« The obs button toggles the T @lnhg CM Ch

average observed values, which
are weighted by exposure.

« Within each variable level,

Weighted Response
Average Observed Value = -

Total Weight

Annual Mileage — Observed Average
Annual Total Weighted : Average Observed _ ~
Mileage | Weight Response: Value 0.064 40
2000 | 23269 1,274 : 0.0548 0.062 - / - 35
3000 | 42,153 2,427 0.0576 | - 30
4000 | 106,574 5979 0.0561 0.06 /"”*f**’.”””wl/ 05
5000 | 119,996 7,157 0.0596 0.058 -
6000 | 117,888 7,011 : 0.0595 0.056 - / - 20
7000 | 48,426 2,886 : 0.0596 : - 15
8000 | 136,342 8,086 : 0.0593 0.054 - 10
9000 | 23,374 1,419 0.0607 0.052 4
10000 | 168,833 10,581 0.0627 : ’—‘ )

0.05 +—1 [ ] 0

2000 3000 4000 5000 6000 7000 8000 9000 10000




The CA button toggles the
average fitted values of the
current model.

Within each variable level,

Average Fitted Value =

Annual Total Weighted : Average Fitted 0.064 -
Mileage | Weight Fitted Value: Value

2000 23,269 1320 0.0567 0.062 -
3000 42,153 2421 0.0574 0.06 -
4000 | 106,574 6165 0.0578

5000 | 119,996 6987 0.0582 0.058 -
6000 | 117,888 6954 0.059 0.056 -
7000 48,426 2881 0.0595 )

8000 | 136,342 8187 0.06 0.054 -
9000 23,374 1424 0.0609 0.052 -
10000 | 168,833 10366 0.0614 )

0.05

| A F (| ebs CM |Ca
Weighted Fitted Value of Current Model
Total Weight
Annual Mileage — Fitted Average
- 40
- 35
/ - 30
Ar/’"‘// 25
a4 20
15
- 10
= [ A P 1

2000 3000 4000 5000 6000 7000 8000 9000 10000




The obs and CA buttons are
often toggled together in order

to examine whether the current
model is in balance with the data.

0.064 -
0.062 -
0.06 -
0.058 -
0.056 -
0.054 -

0.052 -

0.05

Annual Mileage

-

2000 3000 4000 5000 6000 7000 8000 9000 10000

— @ Observed Average —A— Fitted Average

- 40
- 35
- 30
- 25
- 20
- 15
- 10




Basic Concepts: Relativities

D | ol O = | e

 The CM button with predicted
value and rescale buttons toggle

the relatIVItleS Of the Current mOdel .. Annual Mileage — Relativities of Current Model 0w
 The rescale button standardizes 0.98 | o O I
. . g - 30
each predicted value by dividing by 096 o ° s
the predicted value of the model’s 094 2z
base parameter. 92 H H H H 10
0.90 A L
« In the following example, the base e I 1 H i
level is 10000 for Annual Mileage: S LSS S S S @°°
Annual | Predicted Values of : Relativities of
Mileage Current Model _ :Current Model
2000 0.0496 : 0.9187
3000 0.0501 0.9285
4000 0.0506 : 0.9384
5000 0.0512 ©0.9484
6000 0.0517 : 0.9585
7000 0.0523 : 0.9687
8000 0.0528 : 0.9790
9000 0.0534 0.9895
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Basic Concepts: Summary 55

Annual Mileage
0.065 - - 40

« Crimson Line (Obs): actual or

o A 30

observed effect R \'/f**f/ 0

. _ o 0.055 - 10

Dark Brown Line (CA): fitted . ﬁﬁﬂﬂﬂﬁﬂﬁﬂ '
or eXpeCted eﬁe Ct (19@@@ D‘QQQ%QQgﬁgQQ/\QQQ%QQQQ’QQQ\QQQQ

. A 1 @ Observed Average —4A— Fitted Average
Annual Mileage — Relativities of Current Model

1.00 ~ @ 40

" e ° " %2+ Green Line (CM): effect

0o e, 222 of this variable in this

o220 ° Hi1§ model (standardizing for

Zzzmmﬂﬂﬂmﬂm : all the other variables in
LSS LS the model)

e Difference between observed and modeled effects is
owing to impact of other factors in the model




Basic Concepts: Predicted Values vs Linear Predictor §5

The predicted value/linear
predictor button toggles
whether the plotted lines use Predicted Value

the inverse link function (for

predicted value) or the link T @I obs| CM CA

function (for linear predictor).

For a Log link function,

Inverse
— Viewing the predicted values  Link Function ] l Link Function
of the current model’s
parameter values means

exponentiating them - T ‘rﬂ'l.,\ obs| CM Ch

Linear Predictor Linear Predictor
1

| 1
y = h(Combination of Factors) + Error
\ J

I
Fitted Values




Basic Concepts: Reference Model

e Defined using the Define Select reference model Make current model
Reference Model icon to work with reference model

e Possible to define up to 4
reference models

e (Can be compared against the . =
current model using the EI 2| (3] 4| ¥ X &

statistics tab

e Trend lines corresponding to
the reference model can be
added to the main graph

Delete reference
e (Can be reloaded using the model
Reload Reference Model icon

Reload reference
model

« Set your current model as reference
model 1
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Modeling Process

« Building the model is an iterative process

o Review modeling
decisions

Include new
effects

e Exclude effects

o Simplify effects
with groups and
curves

Complicate ¢
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Testing for Factor Inclusion/Exclusion §5

* We use the following tests to decide which
variables to include in our model
— Balance Test (comparing Actual vs Expected)
— Confidence Intervals of Parameter Estimates
— Statistics (Chi-square, AIC, BIC)
— Consistency of Patterns
— Sense Check/Judgment
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Testing for Factor Inclusion/Exclusion §5

Balance Test

 |f Actual and
Expected are
similar on a
univariate basis,
we say that the

Predicted Values - IncurredAge

model is “in
balance” by this
variable

e O S S S S TS T H H HH Hak

« |f a variable is out
of balance, we
should investigate
adding the variable

wﬂﬂﬂﬂﬂﬂﬂnnmm:
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Testing for Factor Inclusion/Exclusion 55

Confidence Intervals of Parameter Estimates

 [f the confidence
Interva|S Of a" o Predicted Values - TQ_Status o
levels of a N
variable include
the base, the
variable could be
considered for
exclusion from the
model

—————

—————
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Testing for Factor Inclusion/Exclusion

Statistics
« We can compare statistics between current and reference models
» Chi-square:

— Allows a hypothesis test of nested models

— The closer to zero, the stronger the result of the test

— 5% is a common cut-off
» Information criteria (AIC, BIC):
— Allow a comparison of two

. Current Model Reference Model Difference
models (not necessarily | o —
Nn ested ) Sampling Training Training
Model Description WMean + Durvear + IncurredAge Mean + Dury'ear + IncurredAge
— These are a trade-off between Zero Weighted 988,690 938,690 0
fit to the data and complexity F'”‘jf' or f‘mjl‘f'“”ﬂs E E E
omplex Alias
of the model Fitted Parameters 63 18 45
- Thelower the crteria, the oS,
better AIC 34,07463 37 656.42 -3,581.794
. . . BIC 34 837 48 37 BBBET -3,001.182
- BIC punlSheS |nCIUS|On Of Fitting Result Converged OK Converged OK
additional parameters more
than AIC

[TUict]| 25



Testing for Factor Inclusion/Exclusion

Consistency of Patterns

If a variable has
parameters which are
consistent across a
random split of the data
or some other factor
(such as time) it gives us
more confidence that the
parameters are not being
driven by some isolated
part of the modeling data

Predicted Values - Marital _Status

v

/'

3

—————

—————

00000
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Testing for Factor Inclusion/Exclusion §5

Sense Check/Use of Judgment

 ltis preferable to be
able to explain the
effects included in
the model

« Ask yourself: does
the effect make
sense?

Predicted Values - IncurredAge

Ll i

« We will try adding Incurred Age to the model
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Testing for Factor Inclusion/Exclusion §5

« We can visualize the impact on the Duration effect of
adding Incurred Age

Rescaled Predicted Values - DurYear

* The green line shows
the effect of duration
once incurred age is .
taken into account

« Remember that one

RS T o B O o
of the goals of (1L
predictive modeling 2 LT
. ¥V V |V VIV Y VvV VY Ve vy
is to understand the o TH I HTH T Hﬂ
-5+ F 2%
process uudduuuL HUDDDD“W

* Try adding other factors to your model
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Investigating interactions

« Sometimes it is not enough to include two variables in the model- it
IS necessary to include their combination

« This is when the impact of one variable depends on the level of
another variable

 This is called an interaction
* In auto insurance, the canonical example is age x gender

.  Interactions can be found by
Relationship between males . .

“ and females is a different at — Inspection: looking to see where

e \ eachage. combinations of factors are “out of

- balance”

- — Calculation: calculating

= combinations of factors that are

= out of balance

- \-\ ° — Distortion: of an existing model

i I e U sioich
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Investigating interactions

« Here we will investigate Incurred Age and Marital Status

« This pair of factors is out of balance

 If we add the interaction into the model, we can see how the
Incurred Age effect varies for each level of Marital Status (i.e.
age has a different impact for singles and marrieds)

Marital_Status x IncurredAge - multi-way results Rescaled Predicted Values

ILTCI| 30




Simplifying factors using groups and curves 55

Why do we simplify models?

* For statistical reasons:
— A parsimonious model is better
— Einstein: “A model should be as simple as possible but no
simpler”
* For business/conceptual reasons:

— Ordinal variables (age, duration, coverage amounts) should in
most cases vary smoothly

« We will carry out two kinds of simplifications:
— Groupings for categorical factors
— Curves for ordinal factors
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Simplifying factors using groups and curves 55

Grouping categorical variables

 If two levels have similar parameters, it may make sense
to group them

It may also make sense to group “small” levels with the
base, or some other reasonable level

Predicted Values - TQ_ Status Predicted Values - TQ_Status
- o - oo

-----
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Simplifying factors using groups and curves

.

Ordinal variables can be simplified with curves

Rather than having one
parameter per level, it may
make sense to include a
function of variable levels in
the model

Common examples are

— Polynomials: a*x, a*x+b*x"2

etc.

— Logs: In(x)
This makes the model more
parsimonious, and means that
effects are smooth, which can
make more sense intuitively,
and be more useful for
business applications

Predicted Values - IncurredAge

HHHH”UDDDDDDDD::
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[ ]
* Residual Plots
Gammar ErrorlLog Link (Studentized Standardized Deviance Residuals)

— We should run a residual | .. g
plot in order to check that | = : e
our model assumptions " . 8

" u =8

are appropriate

— Plot should be
symmetrical about the

- ' TP
=13
=15
=16
=18

] =N [mal ]
1 1 1 1

[}
|

vertical axis, with no g
obvious pattern o

oA
LR
LI

— Depending on the data
being modeled, this is 105 110 115 120 125 10.0 105 140 145 ‘50 155 160 165
. Transform ed Fitted Value
more or less complicated

* Revisiting Modeling Decisions

— We should review all of our modeling decisions, including
factor inclusion/exclusion, simplifications and interactions

— We will do this using Model Manager, after saving our model

o o B o
1 1 1
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Testing/comparing predictiveness of model/s §5

* Qur two goals in predictive modeling were
— Prediction: to be able to predict responses for future input variables x

— Information: to understand the process that associates response
variables with input variables

“Prediction is difficult, especially when you want to predict
the future”

Attributed to Niels Bohr...

...and Yogi Berra

 We now show:
— How to test predictiveness of a model on hold-out data
— How to compare predictiveness of models on hold-out data
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Testing/comparing predictiveness of model/s §5

 We can compare Actuals to Expected on hold out data

— On a univariate basis, by different variables. We expect the lines
to be close for well-populated levels

— |n a Lift Chart, where the horizontal axis is the model fitted value.

180000
160000
140000
120000
E‘ 100000
Low oo
]
60000
40000
04 1]
a ] el A Sl o ] el 4] £ A %3 ] éﬁ el
F &5 ﬁ"’bé‘& S @ifb R ﬁ’; FEIFSSF IS
AT I S CU. - P S A g S 3 AR, S
FEEFT TSI TSI &
Absolute value: Current model
—w ts —@—Data —&—
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Testing/comparing predictiveness of model/s

 |If we want to compare two models, we can
— Calculate the fitted value for both on the hold-out data,
— Calculate the ratio of fitted values
— Use this as the horizontal axis of a chart

— In each interval of “model difference” we can calculate the Actual
and the Expected according to each model

 This tells us ot s

— How different the =N -
models are -

— Where they are g -
different, which makes

better predictions H H W .
e ﬂ el

<60% 60%-70% 70%-B0% B0%-90%  90%-100%  100%-110%  110%-120% 120%-130%  130%-140%  140%-150%  150%-160% >160%

eig| —m—Observed —&—
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Conclusion

* Once we are happy with our model, we can use it to
make predictions

« QOutput will look something like this

Base 0.0004
Gender Incurred Age Duration Marital Status Premium Class
Female 1.0000 35- 01171 r] 1.0000 Married 1.0000 Preferred 0.8682
Male 07560 36 0.1326 f) 1.4224 Single 21227 standard 1.0000
37 0.1484 3 1.8732 Substandard 1.1006
38 0.1641 "a 2.3006
39 0.1796 s 2.6933
"10 0.1947 s 2.9984
31 0.2092 7 3.2136
rl-"l e rﬂ S TR A A
Base Gender Incurred Age Duration Marital Status Premium Class Expected
Mortality
(per '000)
Male 51 5 Single Preferred
0.0004 0.7560 0.3293 2.6933 2.1227 0.8682 0.4775
so 0.3171 e 28584
51 0.3293 n7 2.7583
52 0.3425 8 26561
rI:'.'P VI ETO r‘lﬂ T EATA
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Conclusion éz

« Today we fit a GLM of LTC Incidence on real data

 This allowed us to

— Understand incidence (what variables, and combinations of variables,
impact on incidence- and the effect of each)

— Make predictions about the incidence to be expected for certain
combinations of variables

« |If you have any questions, please contact us:
— Benjamin.Williams@willistowerswatson.com
— Matt.Morton@LTCG.com

* A useful reference for GLMs is:

— A Practitioner’s Guide to Generalized Linear Models, by Anderson,
Feldblum, Modlin, Schirmacher, Schirmacher and Tandi

« We thank you for your participation in the session, hope that you
have found it interesting, and wish you a safe journey home
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