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Introduction

H d l LTCHow can we develop LTC 
assumptions that predict well for 

i t th f t ?many years into the future?

Can 
predictive 
analytics 

help?
Explored case study of 

claim termination assumption
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claim termination assumption 
for one company



Agenda

• Traditional method and its challenges

• Two predictive methods as solutions
B ild comfort b nderstanding similarities– Build comfort by understanding similarities

– Expand solution with advanced methods

• What challenges remain?
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Disclaimer: The views and opinions expressed in this presentation are those of 
the presenter and do not reflect the official policy or position of Milliman, Inc.



Traditional method

• Starting expectation of claim terminations

• A:E adjustments with judgement
Amo nt of eight to gi e data– Amount of weight to give data

– Variable selection and interactions

• Enhanced to adjust and re-normalize 
iteratively
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Traditional method

Discounted Average Length of Stay by Incurral Age
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Traditional method challenges

• Effort and cumbersome

Judgement decisions:Judgement decisions:
• Variable selection
• Interactions/slices
• Weight given to data

• Does not tell us if works on unseen data
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Traditional method biggest challenge

Traversing the bias-variance tradeoff

High bias High varianceg
Low variance

Low data weight

g
Low bias

High data weight
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Can predictive analytics help?

T ibiliti t f th dTwo possibilities out of many methods:

1 Penalized GLM1. Penalized GLM
– Similarities to traditional

Add h ll– Addresses most challenges

2 GBM2. GBM
– Addresses remaining challenges
– Powerful predictor, but less user control
– Can be used to supplement penalized GLM
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Penalized GLM

ff G ff

How does it work?

• Develops coefficients using GLM with E offset 
– Similar to A:E adjustments

• Penalizes coefficients to control overfitting
– Determines amount of weight to give dataDetermines amount of weight to give data

• Chooses penalty to minimize cross-validation errorChooses penalty to minimize cross validation error
– Traverses bias-variance tradeoff
– Produces better predictions on unseen data
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Penalized GLM a.k.a., Generalized linear model with regularization



Penalized GLM

• Penalty minimizes cross-validation error 
• Determines data weightDetermines data weight

Test MSE
Test MSE

Bias

Variance

Variance Bias

Data Weight

Just right
Min error

Underfitting
Full penalty

Overfitting
No penalty

Penalty (λ)

No penaltyOptimized
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Penalized GLM

K-fold cross-validation
– Calibrates model using training dataCa b a es ode us g a g da a
– Tests how well model predicts unseen data
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Penalized GLM
Future Profit Margin
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Incurral Age

• Apples-to-apples, except method
• Penalized GLM gave less weight to data
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Penalized GLM gave less weight to data



Penalized GLM

Why do we like it?

• Automates bias-variance tradeoff
Choice of data weight– Choice of data weight

– Tests prediction on unseen data
• Efficient to update/modify• Efficient to update/modify

• Similarities to traditional• Similarities to traditional
• Reduces human error
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Penalized GLM

What challenge remains?

Navigating complex interactions 
- What are the key interactions?

How do we slice the data?- How do we slice the data?
- Do the slices vary with interactions?
- Are the adjustments similar enough to keep rolled-up?
- Is there enough data in a slice?

Incurral Age
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Practical applications of predictive analytics: case study of claim termination assumption 14

something to help…



GBM

How does it work?

• Develops A:E adjustments

• Builds layers of decision trees to minimize error• Builds layers of decision trees to minimize error
– Slices data to create variable buckets
– Finds complex interactionsFinds complex interactions

• Control for overfitting using cross-validationg g
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Gradient Boosting Machine (GBM)



GBM

3 Tree de elops

1. Start with 
b E

3. Tree develops 
A:E adjustments to 

minimize error
base E

2. Subsample and 
calculate errorcalculate error

4. Calculate new “E” by 
layering A:E adjustments and 

repeat ~1 000 times
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repeat…. ~1,000 times



GBM

C t l fitti i lid ti

Underfitting OverfittingOptimal

Control overfitting using cross-validation

Minimum

g g

Key hyperparameters
Minimum 
CV error – Sub-sampling

– Shrinkage

Er
ro

r

CV error

– Interaction depth
– Minimum observations

Number of trees

E

CV error

Training error

– Number of trees
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Number of trees



GBM
F t P fit M i
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GBM introduces new interactions and buckets
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GBM

Why do we like it?

• Little input from researcher
U l i t ti• Uncover complex interactions

• Powerful predictor
• Aid to build interactions for penalized GLM
• Understanding variables’ relative importance
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Understanding variables  relative importance



GBM
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Useful in understanding complex data



What challenges remain?

• Limited data
– Supplement with industry data

B d i d t• Beyond experience data
– Hold level or grade off adjustment

• Trend
– Understand driver
– Hold level or grade off
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Summary of case study

P li d GLM d GBMPenalized GLM and GBM

Similarities to traditional butSimilarities to traditional, but…
• Automates bias-variance tradeoff

Effi i t t d t / dif• Efficient to update/modify
• Reduces human error
• Uncovers complex interactions

R b t till idRemember to still consider…
• Supplementing with industry data
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• Using judgement with extrapolation and trend



Questions?

Practical applications of predictive analytics: case study of claim termination assumption 23



References and resources

• 2017 ILTCI predictive modeling workshop homework and resources 
http://www.iltciconf.org/predictivemodelingmaterials.htm

• Armstrong, B. & Parkes, S. (2015).  Calibrating Risk Score Model with Partial Credibility. 
Forecasting and Futurism, 11, 25-29.

• James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013).  An Introduction to Statistical Learning: 
with Applications in R. New York, NY: Springer-Verlag New York.

• Friedman, J., Hastie, T., Tibshirani, R., (2010).  Regularization Paths for Generalized Linear 
Models via Coordinate Descent. Journal of Statistical Software, 33(1). Retrieved from 
http://www.jstatsoft.org/v33/i01/

• Miller H (2015) A Discussion on Credibility and Penalised• Miller, H. (2015).  A Discussion on Credibility and Penalised 
Regression, with Implications for Actuarial Work.

• R Development Core Team (2011), R:  A Language and Environment 
for Statistical Computing. Vienna, Austria : the R Foundation for p g ,
Statistical Computing. ISBN: 3-900051-07-0. Available online at 
http://www.R-project.org/.

• Hastie, T., Tibshirani, R., & Friedman, T. (2009).  The Elements of 
St ti ti l L i D t Mi i I f d P di ti S d

Practical applications of predictive analytics: case study of claim termination assumption 24

Statistical Learning:  Data Mining, Inference, and Prediction, Second 
Edition. New York, NY: Springer-Verlag New York.


