Actuarial & Finance

Mortality and Morbidity Trends and Other Assumption Topics

Tuesday March 20, 2018 3:45 – 5:00 pm

18th Annual Intercompany Long Term Care Insurance Conference

[LTC]

ILTCI Mobile App Download Instructions

⊈iPhone ⊈iPad

- 1) Type https://crowd.cc/s/1flyo in web browser
- 2) Click "Download iPhone/iPad App" to load Apple's App Store and download the app.

android 1)

- Type https://crowd.cc/s/1flyo in web browser
- 2) Click "Download Android App" to load the Google Play Store and download the app.

*** BlackBerry 1)

You'll be using the web version of the app. Open the web browser, click the BlackBerry menu button, select "Go To" and type https://crowd.cc/s/1flyo.

You can also just go to your app store and search 'AttendeeHub'. Once installed search 'ILTCI' and you'll find our app. A Special Thank You to this year's Mobile App Sponsor

Session Survey Instructions

00 26% 9:53 Keynote Speaker - Vinh... 4 < Conference Association, Inc. is proud to present this year's keynote speaker Vihn Giang! Show More Speakers Vinh Giang Entrepreneur and Magician Keynote Live Polls Session Eval Q1 Session Eval Q2 Photos \Box 0 <

Once you are in the app go to the schedule and the session you are in. Scroll to the bottom to find the Live Polling questions. This year the session survey questions can be found in this section and will take just a couple seconds to complete.

- AI Schmitz, FSA, MAAA
 - Principal and Consulting Actuary, Milliman
- Chris Giese, FSA, MAAA
 Principal and Consulting Actuary, Milliman
- Dave Benz, FSA, MAAA
 - Managing Actuary, Long Term Care, GE Capital
- Dave Rengachary, MD
 - SVP and Chief Medical Director, USMM, RGA Reinsurance Company

Actuarial & Finance

Trends in Setting Mortality Assumptions

Chris Giese, FSA, MAA Principal and Consulting Actuary Milliman

18th Annual Intercompany Long Term Care Insurance Conference

Agenda

- Overview of Industry Practices
- Assumption Construction
- Active and Disabled Mortality Research Examples
- Mortality Trends

Industry Modeling of Mortality

- Historically used a total mortality approach
- SOA tables and / or Company experience
- SOA table examples
 - 1983 GAM
 - 1994 GAM
 - Annuity 2000
 - 2012 IAM
- Rates used for combined active and disabled lives
 - Active = individuals <u>not</u> on claim
 - Disabled = individuals on claim

Total Mortality Comparison: Rates

Females 1983GAM, 1994GAM, A2000, and 2012IAM

Total Mortality Comparison: Ratios

Females Ratio to 1994 GAM

Company Experience

- Policy Terminations splitting between death and lapse
- Identifying Deaths methods
- Assigning Deaths healthy life death or disabled life death

Splitting Policy Terminations

- Policy termination
 - Need to identify reason policy terminated
 - Death
 - Voluntary Lapse
 - Benefit exhausted
- Deaths are underreported for LTC products
 - Generally no cash value in LTC products, no incentive for insured to let company know about a death
 - Generally better for disabled deaths

Internal Source

- Company operations area
- Other lines of business (such as life insurance)

External Source

- Social Security Death Master File (DMF)
 - Due to privacy concerns, DMF is not as inclusive as past
 - Type of "join"
 - Social Security Number only
 - SSN & Date of Birth
 - SSN, Death of Birth, and Name
 - Need to only include matches where the date of death is close to the termination date
 - How strict will \uparrow or \downarrow deaths
- Vendors
- State information

12

Assigning Deaths

- Assign deaths
 - "Healthy Life": Died while not on claim (such as premium paying)
 - "Disabled Life": Died while on claim
- Elimination Period
 - Consistency of claim definition
 - Projection model impact
 - Claim reserve impact
- End of claim
 - Relationship of claim end date and date of death
 - Situation where claim closes, but policy continues for a short period, then the policy terminates
 - Need a rule for distance between claim end date and date of death

Variables Influencing Total Mortality

Examples

- Attained age
- Gender
- Active and disabled mix
- Underwriting selection
- Risk class
- Correlation with morbidity experience
- Calendar year changes or "improvement"
- Anti-selection impacts, particularly following rate increases
- Care setting
- Time on claim

Evolving Approaches

- Actuarial models historically used
 - Policy terminations active and disabled mortality not separated
 - Claim terminations disabled mortality and recoveries not separated
- Movement toward "First Principles" models
 - Policy terminations model active and disabled mortality separately
 - Claim terminations model disabled mortality and recoveries separately
- Use of predictive modeling
 - Identify variable importance and dependence

Females – Disabled Mortality Estimate

Sample Experience: Female Disabled Mortality Rates

All Claim Durations

Comparison with 1994 GAM Static

Mortality and Morbidity Trends and Other Assumption Topics

Mortality Rate

Females – Disabled Mortality Estimate

Sample Experience: Female Disabled Mortality Rates

Claim Duration 3+

Comparison with 1994 GAM Static

Mortality and Morbidity Trends and Other Assumption Topics

Mortality Rate

Disabled, Active, and Total Mortality

Implied Female Active Mortality Rates Using Sample Disabled Life Mortality Experience

Total Mortality = 1994 GAM Static

Disabled, Active, and Total Mortality

Implied Female Active Mortality Rates

Using Sample Disabled Life Mortality Experience

Total Mortality = 2012 IAM Basic

Mortality and Morbidity Trends and Other Assumption Topics

Mortality Rate

Active vs. Total Mortality Observations

- Watch out for misaligned tables
 - Could lead to counterintuitive results, such as a drop in implied active life mortality with increasing age
- Active life mortality vs. 2012 IAM (sample)
 - Ultimate observed was 80% to 90% of 2012 IAM
 - Ultimate ratio appeared consistent across issue ages
 - Variation by gender
 - Male mortality tended to be closer to 2012 IAM
 - Female "A/E" was roughly 25% lower than male

Significant variability

- Gender
- Claim Duration
 - Claim year 1 higher
 - Claim year 2 tends to be the lowest
 - Mortality generally stable after claim year 2
 - Patterns by age and duration
- Care Setting
 - SNF > HHC > ALF
 - Pattern varies by claim duration

Summary Disabled Mortality – Gender

Summary Disabled Mortality – Gender

LT

23

Sample Experience: Female Disabled Mortality Rates

By Claim Duration

Variability Care Setting

Sample Disabled Life Mortality Experience

Actual-to-Expected Ratios

By Care Setting & Claim Duration

Disabled deaths are 40% to 70% of total claim terminations

 Varies by age – higher percentage at older attained ages

 Potential underreporting results in higher percentage of recoveries

Mortality Trends ("Improvement")

- Many influences; examples:
 - Medical advancement, improved work conditions, public health initiatives, individual lifestyle changes, increases in income/education
- Considerations
 - Population segment
 - General population vs. insured LTC population
 - Active and disabled
 - Projecting into the future
 - Industry practices
 - SOA scales
 - Link to morbidity

Disabled Mortality – Retired Pensioner

Ratio of RP-2014 to RP-2000 Disabled Lives

- First principles and predictive modeling pushing improvement to better understand mortality
- Showed samples today significant variations expected within and across blocks
- Fitting mortality together with morbidity
 - Correlations
 - Implied in severity
- What does the future hold?

Actuarial & Finance

Morbidity and Morbidity Improvement

Dave Benz, FSA, MAA Managing Actuary, Long Term Care GE Capital

18th Annual Intercompany Long Term Care Insurance Conference

This presentation and the views expressed within the oral presentation are being offered for your convenience and education and may contain opinions and viewpoints that are not the opinions and viewpoints of Employers Reassurance **Corporation, Union Fidelity Life Insurance Company, General** Electric Corporation or any of its affiliates. Employers **Reassurance Corporation, Union Fidelity Life Insurance** Company, General Electric and its affiliates make no representations or warranties of any kind, express or implied, regarding the accuracy, reliability, completeness, timeliness or applicability for a particular purpose of the information contained in this presentation and make no endorsement of the opinions of the presenter offered herein.

LTC Morbidity

- Incidence probability of a claim
- Continuance length of a claim
- Utilization benefit amount used during a claim

Mortality and Morbidity Trends and Other Assumption Topics

Measuring LTC Morbidity Improvement

Incidence

- Compare rates at comparable attained ages at different time periods

Continuance

- Compare claim lengths over different incurred years

Utilization

- Compare utilization rates year to year

Total Claim Cost Approach

- Build a calendar year adjustment into your experience studies
- The "safe harbor" of industry benchmarking
 - Treat this as a future assumption only largely independent of past experience

The first four all need some care in controlling for distribution differences – anything by which the assumption may vary

33

Incidence Indications in the SOA Experience Database

Incurred Age Group	Calculated Durational Change	Durations Used in Analysis
Female 80-84	-1.4%	13
Male 80-84	-0.7%	12
Female 85-89	-2.3%	14
Male 85-89	-1.4%	13
Female 90+	-1.6%	14
Male 90+	-0.9%	13

- Database does not include calendar year
- Used constant attained age groups and varied duration
- Duration 10+, at least 50 claims

See: Long-Term Care News, August 2017 for fuller discussion

Incidence Indications at Company Level

- Results mixed
- Credibility low
 - Direction may be more important than absolute value
 - Tradeoffs between sample size and homogeneity

Charts and graphs are illustrative only

Another Look at Incidence Indications

Durations 11+ - all experience	Attained ages 75-79	Attained ages 80-84
Issue ages 65-80	1.95%	3.70%
Issue ages 55-64	1.50%	3.00%
Durations 11+ - female, 90/Unl, compound IPO, comprehensive	Attained ages 75-79	Attained ages 80-84
Durations 11+ - female, 90/Unl, compound IPO, comprehensive Issue ages 65-80	Attained ages 75-79 3.55%	Attained ages 80-84 4.35%

Charts and graphs are illustrative only Need to be careful with cell distributions – but that reduces exposure

Long Term Care Morbidity Improvement Study (Stallard and Yashin)

- Population data generally non-insured
- 1984-2004 observation period
 Cohort analysis vs. extrapolation
- Benefit trigger is estimated
- Primarily an incidence look with some look at length of disability, nothing on utilization
- Oldest ages show less improvement on very limited data
- Cannot account for policyholder behavior

Common Pitfalls

- Conflation (the process or result of fusing items into one entity) and compounding (to increase or add to)
- Policy design influence
- Outside influencers
 - Rate Increase Activity
 - Economy
- Issues when including in your experience studies

The major risk is measuring the same effect in different ways and assuming they are two separate items to include moving forward

Attained age

Issue age and duration

Calendar year

Conflation and Compounding

The major risk is measuring the same effect in different ways and assuming they are two separate items to include moving forward

Issue Age Differentials – idea grows from the thought older applicants might know more about their likelihood of needing care than younger applicants

Why would someone under age 50 buy LTC?

Charts and graphs are illustrative only

Conflation and Compounding

Issue Age Differentials

What might be happening in v2?

- Observing morbidity improvement (calendar year) but including it as an issue age-duration effect – are you also including a separate morbidity improvement assumption?
- You might be correcting for a slope issue with the underlying claim cost table (attained age) and extrapolating (by calendar year or duration) to your detriment

An 18% difference between two issue ages 10 years apart is equivalent to 2% morbidity improvement for 10 years

Charts and graphs are illustrative only

Conflation and Compounding

- Utilization improvement consistency in measurement and projection?
- Issue era or policy form series factors measuring true differentials or including other sources of improvement?
- Underwriting and spousal discounts
 - Are the impacts on morbidity constant by duration or age?
 - How are you building your base claim cost tables?
 - Are the distributions of the discounts relatively

constant by attained age?

Charts and graphs are illustrative only

Everything converges in the 90s?

Policy design may have more influence on decisions made at younger age – this seems to influence both incidence and severity

How might this influence your improvement measurements?

Charts and graphs are illustrative only

Variability Over Time

Rate Increases and the Economy

Charts and graphs are illustrative only

Considerations in Experience Studies - Summary

- Correct underlying table from what are you improving?
- Table slope
- Noise
 - Issue age, issue era
 - Utilization changes
 - Continuance changes
 - Underwriting and spousal discounts
 - Rate increases influence policyholder behavior
 - Economy
 - Policy language, claim administration, and underwriting changes
- Will future be like the past?
 - Cohort health analysis many claim mortality improvement has already stopped
 - Medical advances and changes in care delivery
 - Does it vary by attained age as mortality improvement seems to?

Actuarial & Finance

Key New Medical Drivers in Morbidity and Mortality

Dave Rengachary, MD SVP and Chief Medical Director, USMM RGA Reinsurance Company

18th Annual Intercompany Long Term Care Insurance Conference

Actuarial & Finance

#1: Incorporation of Whole Genome Sequencing into Clinical Care

18th Annual Intercompany Long Term Care Insurance Conference

ILTCI

- Prevention of Disease manifestation -BRCA
- Precision Medicine

 Pharmacogenetics
 Cancer treatment
- Newborns screening

- Accurate diagnosis of rare disease
- Everything "book of life analogy"

https://pixabay.com/en/dna-biology-medicine-gene-163466/ Creative commons attribution CC0

What about morbidity?

- Lifestyle modification
 - ApoE
 - Cardiac risk prediction
 - Epigenetic analysis Smoking, exercise, diet
- Avoiding cumulative burden of disease and medication toxicity
- MedSeq Results
 - 34% New clinical actions for WGS+FH (vs. 16% FH alone)
 - 41% of WGS + FH (vs. 30% FH alone) reported making healthy behavior change at six months

Jason L. Vassy, Kurt D. Christensen, Erica F. Schonman, Carrie L. Blout, Jill O. Robinson, Joel B. Krier, et al. The Impact of Whole-Genome Sequencing on the Primary Care and Outcomes of Healthy Adult Patients: A Pilot Randomized Trial. Ann Intern Med. 2017;167:159–169

Limitations

- Cost
- Genotype Phenotype correlations
- Communication gap Genetic Counselors
- Variations of unknown significance (average of 3 million per person)
- Data demands
- Ethical and Privacy concerns

Actuarial & Finance

#2 – Alzheimer's diagnostics shift the curve

18th Annual Intercompany Long Term Care Insurance Conference

[LTC]

- Question If you walked into a doctors office today, had no symptoms, and wanted to know your likelihood of developing Alzheimer's dementia....
 - How accurately could this be predicted?
 - ….How *long* into the future could we make that prediction?

AD Biomarkers

By Klunkwe - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=5470244

http://www.medscape.com/viewarticle/761284_5

Alzheimer's Diagnostics

Actuarial & Finance

#3: Application of big data to modern medicine

18th Annual Intercompany Long Term Care Insurance Conference

ILTCI

- 80% unstructured
- Marketing hype tests faith
- Limited Crosstalk and compatibility
- Privacy
- Discomfort with removing human element in healthcare

Big Data and Health Care – In Theory and Practice

	Standard	Preferred	Relative mortality
Steps	7,000	10,000	0.83
Activity	0-1x	1-2x	0.86
Inactivity	8+ hrs	6-8 hrs	1.00*
Resting heart rate	70 bpm	60 bpm	0.96
Sleep	6 hrs	7 hrs	0.95
			0.65

Actuarial & Finance

18th Annual Intercompany Long Term Care Insurance Conference

Trends in Cancer Mortality

- Overall cancer death rate decreased annually by 1.5% between 2006-2015
- Gains were greater in men than women
- Highest level of declines occurred in lung, breast, prostate and colorectal cancer
- Smaller degrees of rise in death rates of liver cancer, uterine cancer and pancreatic cancer.
- Significant lead time bias for certain cancer (e.g. prostate)

"Cancer Statistics, 2018 - Siegel - 2018 - CA: A Cancer Journal for Clinicians - Wiley Online Library." Accessed January 15, 2018. http://onlinelibrary.wiley.com/doi/10.3322/caac.21442/full.

Immune checkpoint inhibitors

CAR-T Cell Therapy

By Caron A. Jacobson and Jerome Ritz [Public domain], via Wikimedia Commons

Prior to recent advances last drugs approved ware departmenting in 1075 and interlaution 2 (III - 2)

Late Stage Melanoma Treatment

- were dacarbazine in 1975 and interleukin-2 (IL-2) in 1988
- Response rate for dacarbazine is around 10% with an 18% overall 5 year survival for stage IV melanoma

https://upload.wikimedia.org/wikipedia/commons/6/6c/Melanoma.jpg Public Domain https://commons.wikimedia.org/wiki/File:DIG13605-028.jpg Public Domain

Mortality and Morbidity Trends and Other Assumption Topics

Unstaged

64

Late Stage Melanoma Treatment

Immune Checkpoint Inhibitors

Representative Examples

Medication	Target	Cancer
Nivolumab	PD-1	Melanoma, Non-small cell lung cancer, head and neck cancers, Renal cell, Hodgkin's lymphoma
Pembrolizumab	PD-1	Melanoma, Non-small cell lung cancer, head and neck cancers
Atezolizumab	PDL-1	Urothelial (bladder cancer), Non- small cell lung cancer
Ipilimumab	CTA-4	Melanoma

Actuarial & Finance

#5 Pharmacogenetics – Sequencing the future of medicine one patient at a time

18th Annual Intercompany Long Term Care Insurance Conference

ILTCI

Pharmacogenetics Use Cases – The Promise

- Proper dosing
- Identifying non-responders
- Cancer treatment algorithms
- Rare disease Treatment
 - Cystic fibrosis
 - Spinal Muscular Atrophy
 - Muscular dystrophy

Barriers and Challenges – The Reality

Are we back where we started?

Offering as a benefit

- Are seeing offering internationally similar to a wellness benefit
 - In force management/Risk factor modification
 - Reduce lapse rates
- Seeing paired with third party or "capped" benefit
- Nutrigenomics being offered as well
- Increasing interest in LTC and group space

Pharmacogenetic Product Applications

- <u>LTC</u> Adverse medication reactions and polypharmacy are a big driver of loss of independence.
- Individualized Rating/Pricing: Instead of now "lumping" this individual back into a Flat extra model, is individualized pricing based an *individualized* recurrence risk score on the horizon?
- <u>Dynamic Rating/Pricing</u>: Post issue, if one now has follow up testing such as liquid biopsy that changes this recurrence risk can they be dynamically priced?

LTC Pharmacogenetic Benefits

Session Survey Instructions

00 26% 9:53 Keynote Speaker - Vinh... \leftarrow < Conference Association, Inc. is proud to present this year's keynote speaker Vihn Giang! Show More Speakers Vinh Giang Entrepreneur and Magician Keynote Live Polls Session Eval Q1 Session Eval Q2 Photos \Box 0 <

Once you are in the app go to the schedule and the session you are in. Scroll to the bottom to find the Live Polling questions. This year the session survey questions can be found in this section and will take just a couple seconds to complete.

THANK YOU!

Dave Benz, <u>david.benz@ge.com</u> Chris Giese, <u>chris.giese@milliman.com</u> Dave Rengachary, <u>drengachary@rgare.com</u> Al Schmitz, <u>al.schmitz@milliman.com</u>

Mortality and Morbidity Trends and Other Assumption Topics

