Actuarial & Finance

Predictive Analytics

Brian Hartman, PhD ASA Assistant Professor of Statistics and Actuarial Program Director Brigham Young University March 20, 2018

18th Annual Intercompany Long Term Care Insurance Conference

[LTC]

ILTCI Mobile App Download Instructions

≰iPhone ≰iPad

- 1) Type https://crowd.cc/s/1flyo in web browser
- 2) Click "Download iPhone/iPad App" to load Apple's App Store and download the app.
- android 1)
- Type https://crowd.cc/s/1flyo in web browser
- 2) Click "Download Android App" to load the Google Play Store and download the app.

*: BlackBerry 1)

You'll be using the web version of the app. Open the web browser, click the BlackBerry menu button, select "Go To" and type https://crowd.cc/s/1flyo.

You can also just go to your app store and search 'AttendeeHub'. Once installed search 'ILTCI' and you'll find our app. A Special Thank You to this year's Mobile App Sponsor

Session Survey Instructions

00 26% 9:53 Keynote Speaker - Vinh... \leftarrow < Conference Association, Inc. is proud to present this year's keynote speaker Vihn Giang! Show More Speakers Vinh Giana Entrepreneur and Magician Keynote Live Polls Session Eval 01 Session Eval Q2 Photos \Box \triangleleft \bigcirc

Once you are in the app go to the schedule and the session you are in. Scroll to the bottom to find the Live Polling questions. This year the session survey questions can be found in this section and will take just a couple seconds to complete.

Bias vs. Variance

⁵Motivating Example

[®]Motivating Example

Predictive Modeling

The expected squared prediction error is:

$$E\left[\left(Y - \hat{f}(x)\right)^{2}\right]$$

$$\left(E\left[\hat{f}(x)\right] - f(x)\right)^{2} + E\left[\hat{f}(x) - E\left[\hat{f}(x)\right]\right]^{2} + \sigma_{e}^{2}$$
Bias² + Variance + Irreducible Error

A perfect model and infinite data would reduce the first two terms to zero, but with finite data and imperfect models, we will need to choose between minimizing bias and minimizing variance.

Bias vs. Variance in our Example

Sample Size = 100

Increasing the Sample Size

Sample Size = 10000

Actuarial & Finance

Predictive Analytics

John Murdzek, FSA Senior Experience Studies Actuary Genworth Financial March 20, 2018

18th Annual Intercompany Long Term Care Insurance Conference

 <u>Disclaimer</u>: The views and opinions expressed in this presentation are those of the presenter and do not reflect the official policy or position of Genworth Financial, Inc. or any of its subsidiaries.

 <u>Data</u>: All data used to support this presentation (including "Own") comes from the SOA LTC Claim Termination Rates Database 2000-2011

- <u>Goal</u>: Observe the traversing of the BVT using hold-out data from publicly available LTCI CTR data
- Classically fit industry and own experience
- A/E and Limited fluctuation credibility views
- GLM views
- Validation using hold-out data
- Test MSE and BVT concepts

Traversing the BVT

Weight of Company Experience

• Credibility approaches help address the trade-off of Bias and Variance between Industry and Company experience, and so can Predictive Analytical techniques

BVT Overview on Hold-Out Data

Weight of Company Experience

 Credibility and GLM approaches produce a reasonable mid-range result

Note: Graphs within the presentation are approximate

Basic CTR Modeling Approach

- Classical fit to industry experience
 - Base table varying by gender and claim type
 - Relativities for claim duration and age
- Data
 - From 2015 SOA LTC Experience CTRs
 - "Industry" Data = 12,449 terminations
 - "Own" Data = 2,646 terminations (not GNW)
 - Females = 80% of "Industry" CTRs
 - Males = 130% of "Industry" CTRs
 - Hold-Out Data = 1,073 terminations

Classical Fit Process

Note: All data comes from the SOA LTC Claim Termination Rates Database 2000-2011

Predictive Modeling

I:

II:

ILTCI 29

Classical Fit Process

Note: All data comes from the SOA LTC Claim Termination Rates Database 2000-2011

Predictive Modeling

I:

Classical Fit to "Industry" Training Data

Termination									
Base	<u>Gender</u>	<u>Situs</u>	<u>CTR</u>	<u>Count</u>					
Table:	Female	ALF	1.6%	1,663					
	Female	HHC	2.6%	3,488					
	Female	NH	2.8%	2,452					
	Male	ALF	2.6%	898					
	Male	HHC	3.3%	2,240	Claim	`		СТР	Tormination
	Male	NH	3.8%	1,708	Claim	Cardan	Citore	Eastar	Count
					Age	<u>Gender</u>	<u>Situs</u>	Factor	Count
	a ·			_ ·	18 to 74	All	ALF	88%	468
Factor	Claim		CIR	Termination	75 to 84	All	ALF	97%	1,410
Factor	Duration	<u>Situs</u>	Factor	<u>Count</u>	85+	All	ALF	117%	683
Tables:	Mos 1-3	ALF	174%	103	18 to 74	Female	HHC / NH	119%	1,952
	Mos 4-12	ALF	81%	604	75 to 84	Female	HHC / NH	90%	2,784
	Yrs 2+	ALF	105%	1,854	85+	Female	HHC / NH	99%	1,204
	Mos 1-3	HHC / NH	361%	1,197	18 to 74	Male	HHC / NH	98%	1,279
	Mos 4-12	HHC/NH	128%	3,821	75 to 84	Male	HHC / NH	98%	1,913
	Yrs 2+	HHC / NH	74%	4,870	85+	Male	HHC / NH	111%	756

 "Industry" CTR = Base Table x Duration-Situs Factor x Age-Gender-Situs Factor

Classical BVT Using Hold-Out Data

Weight of Company Experience

• **Test MSE** =
$$\frac{1}{N} \sum_{\substack{Hold-Out\\Data}} (Term. Count_{Actual} - Term. Count_{Model})^2$$

Why the Classical Fits Can Be Improved

- "Industry" model looks good, except that we know it will be biased vs. the "Own" Experience
- "Own" Experience model is purposely over-fit

Hold-Out Results: "Industry" Model

 The "Industry" model bias can be seen in the Hold-Out data when viewed by gender, and can be addressed using Credibility or GLM approach

Credibility View

- Credibility-Weighting Procedure (III.)
 - Limited fluctuation credibility
 - Credibility-Weighted CTR = $Z \times "Own" + (1 - Z) \times "Industry"$
 - "Own" CTR is the raw experience CTR
 - "Industry" is the model
- 1,082 terminations = full credibility
 - $-Z = Min[1, (N / 1,082)^{1/2}]$
 - -N = number of terminations

BVT Using Hold-Out Data with Cred View

Weight of Company Experience

 Credibility weighting borrows the better aspects of each model, and performs better out-ofsample than either model alone

- Generalized Linear Model (IV.)
 - Normal distribution with a log link
 - Trained on Own Experience data (the 1,573)
 - Offset to the "Industry" model
- Equation
 - -Terminations_{Own} = Expected_{Industry} × $exp(\sum_{i} \beta_{i} x_{i})$
 - Same factors as "Industry" model with slightly less granularity by claim duration

BVT Using Hold-Out Data with GLM View

Weight of Company Experience

• The GLM slightly improves upon the limited fluctuation credibility result

- GLM vs. Credibility approach
 - Less tied to subjective assumptions
 - Results appear to be as good or slightly better
 - Stepping stone to more sophisticated approaches (e.g., Penalized GLM)
- Hold-Out Data approach
 - Relatively simplistic way to reduce the chance of over-fitting or under-fitting
 - Another stepping stone to more sophisticated approaches (e.g., k-fold Cross-Validation)

Actuarial & Finance

Predictive Analytics

Missy Gordon, FSA, MAAA Principal and Consulting Actuary Milliman, Minneapolis March 20, 2018

18th Annual Intercompany Long Term Care Insurance Conference

Traversing BVT

Predictive Modeling

Traversing BVT

Traversing BVT	A:E with credibility weighting	Classical GLM with Offset	Penalized GLM with Offset	GBM
Data credibility	Judgement	Judgement	Cross validation	Cross validation to tune hyper- parameters to control for overfitting
Variable selection	Judgement	In-sample tests of fit	Cross validation	Automated process to minimize prediction error
Interactions	Judgement	Judgement	Judgement	Automated process to minimize prediction error

Domain knowledge

Predictive Modeling

- 1. Gives full credibility to data, unless using judgement
- 2. Violating underlying GLM assumptions may produce misguided conclusions relative to variable selection

3. Judgement to determine interactions and doesn't handle multicollinearity well

Traversing BVT

Predictive Modeling

- Develops coefficients using GLM with offset
 Similar to simultaneous A:E adjustments
- Penalizes (shrinks) coefficients
 - Similar to credibility weighting in A:E study
 - Controls for overfitting
 - No penalty (full data weight) = Classical GLM

- Data credibility and variable selection by shrinking coefficients
 - Automates decision by minimizing the cross validation prediction error
- Judgement to determine interactions
 - Better handling of multicollinearity
 - Challenge remains of navigating complex interactions

K-fold cross-validation

- Use subset of data to develop coefficients
- Calculate error of predicted values on holdout data
- Average error across the k tests

Predictive Modeling

process!

Overfitting No penalty Fully trust data (Classical GLM) Balanced Minimize error Credibility of data

Underfitting Full penalty Don't trust data (Benchmark)

- Test range of penalties (data credibility)
- Chose penalty that minimizes prediction error
- Automated process tests thousands of models with a few lines of code!

Minimizing prediction error

- Objective to minimize MSE or SSE
- Classical GLM: SSE = $\sum (Y x\beta)^2$
- Ridge: SSE + $\lambda * \sum \beta^2$
 - Shrinks coefficients, but remains > 0
 - Helps with multicollinearity

Minimizing prediction error

- LASSO: SSE + $\lambda * \sum |\boldsymbol{\beta}|$
 - Can shrink coefficients to 0
 - Provides automatic feature (variable) selection
- Elastic net: SSE + $\lambda * (\alpha * \sum |\beta| + (1 \alpha) * \sum \beta^2)$
 - Blend of Ridge and LASSO
 - Helps with multicollinearity and provides feature selection
 - α controls the blend
 - $\alpha = 0$ then Ridge, $\alpha \in (0, 1)$ then Elastic net, $\alpha = 1$ then LASSO

- Model objective
 - Minimize prediction error on future data
- Training error
 - Optimistic and decreases by adding variables
- Two fixes
 - In-sample tests: theoretical formula increases training error based on number of variables
 - Out-of-sample tests: directly estimates prediction error

In-sample vs. out-of-sample tests

	In-sample tests	Out-of-sample tests
	AIC, BIC, Adjusted R ² p-values to prune parameters	Separate train/test datasets k-fold cross validation
Pros	Model selection using all dataFast to calculate	No theoretical formulasCompare across algorithms
Cons	 Relies on theoretical formulas May misguide if assumptions violated Harder (or not possible) to compare across algorithms 	 Computationally expensive Potential to misuse if not setup properly (information leak)

Traversing BVT

Predictive Modeling

- Develops layers of "A:E" adjustments
- Layers of decision trees to minimize error
 Slices data to create variable buckets
 - At each point tests every variable and possible slice to minimize error

GBM: how it traverses BVT

- Variable selection and interactions
 - Non-parametric model
 - Automates decisions by minimizing the prediction error
 - Handles complex interactions and provides information on variable importance
- Data credibility incorporated using cross validation to tune hyperparameters that control for overfitting

Model interpretability vs. accuracy

Predictive Modeling

- Stepping stone
 - Isolate changes from one model to the next

- Assumption format
 - Higher inference: multiplicative factors
 - Lower inference: sets of tables or seriatim

• Purpose / materiality

Session Survey Instructions

00 26% 9:53 Keynote Speaker - Vinh... \leftarrow < Conference Association, Inc. is proud to present this year's keynote speaker Vihn Giang! Show More Speakers Vinh Giana Entrepreneur and Magician Keynote Live Polls Session Eval 01 Session Eval Q2 Photos \Box \triangleleft \bigcirc

Once you are in the app go to the schedule and the session you are in. Scroll to the bottom to find the Live Polling questions. This year the session survey questions can be found in this section and will take just a couple seconds to complete.

Q&A

Predictive Modeling

